Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
NPJ Vaccines ; 9(1): 6, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177231

ABSTRACT

The promises of vaccines based on virus-like particles stimulate demand for universal non-infectious virus-like platforms that can be efficiently grafted with large antigens. Here, we harnessed the modularity and extreme affinity of the decoration protein pb10 for the capsid of bacteriophage T5. SPR experiments demonstrated that pb10 fused to mCherry or to the model antigen ovalbumin (Ova) retained picomolar affinity for DNA-free T5 capsid-like particles (T5-CLPs), while cryo-EM studies attested to the full occupancy of the 120 capsid binding sites. Mice immunization with CLP-bound pb10-Ova chimeras elicited strong long-lasting anti-Ova humoral responses involving a large panel of isotypes, as well as CD8+ T cell responses, without any extrinsic adjuvant. Therefore, T5-CLP constitutes a unique DNA-free bacteriophage capsid able to display a regular array of large antigens through highly efficient chemical-free anchoring. Its ability to elicit robust immune responses paves the way for further development of this novel vaccination platform.

2.
Biomater Adv ; 155: 213681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944448

ABSTRACT

Human adenoviruses represent attractive candidates for the design of cancer gene therapy vectors. Modification of adenovirus tropism by incorporating a targeting ligand into the adenovirus capsid proteins allows retargeting of adenovirus towards the cells of interest. Human adenovirus type 5 (HAdV-C5) bearing NGR containing peptide (CNGRCVSGCAGRC) inserted into the fiber (AdFNGR) or the hexon (AdHNGR) protein demonstrated an increased transduction of endothelial cells showing expression of aminopeptidase N, also known as CD13, and αvß3 integrin both present on tumor vasculature, indicating that NGR-bearing adenoviruses could be used as tools for anti-angiogenic cancer therapy. Here we investigated how AdFNGR and AdHNGR infect cells lacking HAdV-C5 primary receptor, coxsackie and adenovirus receptor, and we showed that both AFNGR and AdHNGR enter cells by dynamin- and lipid raft-mediated endocytosis, while clathrin is not required for endocytosis of these viruses. We present evidence that productive infection of both AdFNGR and AdHNGR involves lipid rafts, with usage of flotillin-mediated cell entry for AdFNGR and limited role of caveolin in AdHNGR transduction efficiency. Lipid rafts play important role in angiogenesis and process of metastasis. Therefore, the ability of AdFNGR and AdHNGR to use lipid raft-dependent endocytosis, involving respectively flotillin- or caveolin-mediated pathway, could give them an advantage in targeting tumor cells lacking HAdV-C5 primary receptor.


Subject(s)
Adenoviruses, Human , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Line , Endothelial Cells/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism
3.
Oncoimmunology ; 12(1): 2150472, 2023.
Article in English | MEDLINE | ID: mdl-36545254

ABSTRACT

Extra-cellular galectins 1, 3 and 9 (gal-1, -3 and -9) are known to act as soluble immunosuppressive agents in various malignancies. Previous publications have suggested that their expression is dependent on the metabolic status of producing cells and reciprocally that they can influence metabolic pathways in their target cells. Very little is known about the status of gal-1, -3 and -9 in patients bearing head and neck squamous cell carcinomas (HNSCC) and about their relationships with the systemic metabolic condition. This study was conducted in plasma samples from a prospective cohort of 83 HNSCC patients with advanced disease. These samples were used to explore the distribution of gal-1, -3 and -9 and simultaneously to profile a series of 87 metabolites assessed by mass spectrometry. We identified galectin and metabolic patterns within five disease categories defined according to the primary site and human papillomavirus (HPV) status (HPV-positive and -negative oropharyngeal carcinomas, carcinomas of the oral cavity, hypopharynx and larynx carcinomas). Remarkably, samples related to hypopharyngeal carcinomas displayed the highest average concentration of gal-9 (p = .017) and a trend toward higher concentrations of kynurenine, a potential factor of tumor growth and immune suppression. In contrast, there was a tendency toward higher concentrations of fatty acids in samples related to oral cavity. These observations emphasize the diversity of HPV-negative HNSCCs. Depending on their primary site, they evolve into distinct types of immune and metabolic landscapes that seem to be congruent with specific oncogenic mechanisms.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Hypopharyngeal Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Prospective Studies , Galectins
4.
Front Immunol ; 13: 957008, 2022.
Article in English | MEDLINE | ID: mdl-36248812

ABSTRACT

The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Fas lpr mutation and MRL genetic background. Thus, the Fas lpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4-CD8- double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.


Subject(s)
Receptors, Purinergic P2X7 , Rheumatoid Factor , Animals , Autoantibodies , Homeostasis , Immunoglobulin G , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Receptors, Purinergic P2X7/genetics
6.
Life Sci ; 291: 120116, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34740576

ABSTRACT

AIMS: Adenoviruses that have CNGRCVSGCAGRC peptide inserted into fiber (AdFNGR) or hexon (AdHNGR) protein, respectively, showed increased transduction of endothelial cells. In this study we investigated if cysteines within the CNGRCVSGCAGRC sequence inserted into Ad serotype 5 Ad5 fiber or hexon protein form disulfide bond(s) and whether they play a role in retargeting potential of AdFNGR and AdHNGR. METHODS: Transduction efficiency of adenoviruses was done by counting infected cells under the microscope. Adenovirus attachment and internalization were measured by qPCR. Flow cytometry was used to evaluate the expression of CD13 and integrins. Gene knockdown was achieved by transfection of small interfering RNA. Mass spectrometry was used for determining disulfide bonds in adenovirus fiber and hexon protein. Molecular modeling was use to predict interaction of CNGRCVSGCAGRC peptide and CD13. KEY FINDINGS: AdFNGR and AdHNGR attach better to CD13 and/or αvß3 integrin-positive cells than Adwt. Reducing disulfide bonds using DTT decreased transduction efficiency and attachment of both AdFNGR and AdHNGR. Cysteins from CNGRCVSGCAGRC peptide within AdHNGR do not form disulfide bonds. Knockdown of αvß3 integrin reduced increased transduction efficiency of both AdFNGR and AdHNGR, while CD13 knockdown had no effect, indicating that retargeting properties of these viruses rely mainly on αvß3 integrin expression. SIGNIFICANCE: Insertion site of NGR-containing peptides as well as NGR flanking residues are critical for receptor binding affinity/specificity and transduction efficiency of NGR retargeted adenoviral vectors.


Subject(s)
Adenoviridae/genetics , Adenoviridae/metabolism , Integrin alphaVbeta3/physiology , Cell Line, Tumor , Disulfides/chemistry , Endothelial Cells/metabolism , Genetic Vectors/genetics , HEK293 Cells , Humans , Integrin alphaVbeta3/metabolism , Oligopeptides/pharmacology , Transduction, Genetic/methods , Transfection/methods
10.
J Med Chem ; 61(15): 6574-6591, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30004697

ABSTRACT

Designing multitarget drugs have raised considerable interest due to their advantages in the treatment of complex diseases such as cancer. Their design constitutes a challenge in antitumor drug discovery. The present study reports a dual inhibition of tubulin polymerization and HDAC activity. On the basis of 1,1-diarylethylenes ( isoCA-4) and belinostat, a series of hybrid molecules was successfully designed and synthesized. In particular compounds, 5f and 5h were proven to be potent inhibitors of both tubulin polymerization and HDAC8 leading to excellent antiproliferative activity.


Subject(s)
Drug Design , Histone Deacetylases/metabolism , Stilbenes/chemistry , Stilbenes/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , HCT116 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Humans , K562 Cells , Protein Conformation , Stilbenes/chemical synthesis , Tubulin/chemistry
12.
Front Immunol ; 9: 124, 2018.
Article in English | MEDLINE | ID: mdl-29459860

ABSTRACT

The use of serotype 5 adenovirus (Ad)-derived vectors in vaccination is confronted to preexisting anti-Ad immunity. Epitope display on Ad capsid is currently being investigated as an alternative approach of vaccination. The present study seeks to better understand virus- and host-related factors controlling the efficacy of this new vaccination approach. In contrast to an Ad vector expressing ovalbumin as a transgene, Ad displaying an ovalbumin-derived B-cell epitope inserted into the fiber protein was able to elicit antibody responses in both Ad-naive and Ad-immune mice. Moreover, introduction of a set of mutations abrogating Ad interaction with its receptors did not modify the virus capacity to elicit a humoral response against the inserted epitope while reducing its capacity to mount antibody responses against the transgene product. Taken as a whole these data indicate that the efficacy of Ad displaying epitopes requires neither Ad binding to its receptors nor the infection process. In addition, the use of genetically deficient mice demonstrated that both toll-like receptor (TLR)/MyD88 and RIG-I/mitochondrial antiviral-signaling (MAVS) innate immunity pathways were dispensable to mount anti-epitope antibody responses. However, they also revealed that TLR/MyD88 pathway but not RIG-I/MAVS pathway controls the nature of antibodies directed against the displayed epitope.


Subject(s)
Adenoviridae/immunology , Epitopes/immunology , Myeloid Differentiation Factor 88/immunology , Toll-Like Receptors/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adenoviridae Infections/immunology , Animals , Antibodies, Viral/immunology , Antigens/immunology , Female , Immunity, Humoral , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Ovalbumin/immunology , Signal Transduction
13.
Oncotarget ; 8(57): 97344-97360, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29228615

ABSTRACT

The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.

15.
J Sep Sci ; 39(22): 4299-4304, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27662513

ABSTRACT

The serotype specificity of adenovirus ion-exchange chromatography has previously been studied using standard particle-based columns, and the hexon protein has been reported to determine retention time. In this study, we have submitted Adenovirus type 5 recombinants to anion-exchange chromatography using methacrylate monolithic supports. Our experiments with hexon-modified adenoviral vectors show more precisely that the retention time is affected by the substitution of amino acids in hypervariable region 5, which lies within the hexon DE1 loop. By exploring the recombinants modified in the fiber protein, we have proven the previously predicted chromatographic potential of this surface constituent. Modifications that preserve the net charge of the hexon protein, or those that cause only a small charge difference in the fiber protein, in addition to shortening the fiber shaft, did not change the chromatographic behavior of the adenovirus particles. However, modifications that include the deletion of just two negatively charged amino acids in the hexon protein, or the introduction of a heterologous fiber protein, derived from another serotype, revealed recognizable changes in anion-exchange chromatography. This could be useful in facilitating chromatography-approach purification by creating targeted capsid modifications, thereby shifting adenovirus particles away from particular interfering substances present in the crude lysate.


Subject(s)
Adenoviridae , Capsid Proteins/chemistry , Chromatography, Ion Exchange , Genetic Vectors , Amino Acid Substitution , Chromatography, High Pressure Liquid
16.
Hum Gene Ther ; 27(2): 193-201, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26757054

ABSTRACT

Adenovirus (Ad) infection in humans is associated with inflammatory responses and thrombocytopenia. Although several studies were conducted in mice models to understand molecular and cellular mechanisms of Ad-induced inflammatory responses, only few of them turned their interest toward the mechanisms of Ad-induced thrombocytopenia. Using different depletion methods, the present study ruled out any significant role of spleen, macrophages, and vitamin K-dependent factor in Ad-induced thrombocytopenia. Interestingly, mice displaying thrombocytopenia expressed high levels of cytokines/chemokines after Ad administration. Most importantly, pseudotyping adenovirus with the fiber protein from other serotypes was associated with reduction of both cytokine/chemokine production and thrombocytopenia. Altogether, our results suggest that capsid fiber protein (and more precisely its shaft) of Ad serotype 5 triggers the cytokine production that leads to Ad-induced thrombocytopenia.


Subject(s)
Adenoviridae Infections/virology , Adenoviruses, Human/immunology , Capsid Proteins/immunology , Serogroup , Thrombocytopenia/virology , Adenoviridae Infections/complications , Adenoviridae Infections/immunology , Adenoviridae Infections/pathology , Adenoviruses, Human/genetics , Animals , Capsid Proteins/genetics , Cytokines/agonists , Cytokines/biosynthesis , Cytokines/immunology , Factor X/immunology , Female , Gene Expression , Macrophages/immunology , Macrophages/virology , Mice , Mice, Inbred C57BL , Spleen/immunology , Spleen/virology , Thrombocytopenia/etiology , Thrombocytopenia/immunology , Thrombocytopenia/pathology
17.
Cancer Res ; 75(20): 4292-301, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26359460

ABSTRACT

The Fas receptor ligand FasL regulates immune cell levels by inducing apoptosis of Fas receptor-positive cells. Here, we studied the impact of host FasL on tumor development in mice. Genetically targeting FasL in naïve mice increased myeloid cell populations, but, in marked contrast, it reduced the levels of myeloid-derived suppressor cells (MDSC) in mice bearing Lewis lung carcinoma tumors. Analysis of the MDSC subset distribution revealed that FasL deficiency skewed cell populations toward the M-MDSC subset, which displays a highly immunosuppressive activity. Furthermore, tumor-bearing mice that were FasL-deficient displayed an enhanced proportion of tumor-associated macrophages and regulatory T cells. Overall, the immunosuppressive environment produced by FasL targeting correlated with reduced survival of tumor-bearing mice. These results disclose a new role for FasL in modulating immunosuppressive cells.


Subject(s)
Fas Ligand Protein/deficiency , Immunomodulation , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/genetics , Neoplasms/immunology , Animals , Antigens, Surface/metabolism , B7-H1 Antigen/metabolism , Biomarkers , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Line, Tumor , Disease Models, Animal , Humans , Immunophenotyping , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Neoplasms/mortality , Neoplasms/pathology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Burden/genetics , Tumor Microenvironment/immunology
18.
PLoS One ; 10(2): e0117254, 2015.
Article in English | MEDLINE | ID: mdl-25692292

ABSTRACT

Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFß receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety.


Subject(s)
Adenoviridae/genetics , Capsid Proteins/genetics , Genetic Therapy , Genetic Vectors/genetics , Oncolytic Viruses/genetics , Pancreatic Neoplasms/pathology , Protein Engineering , Adenoviridae/physiology , Amino Acid Sequence , Animals , Biological Transport , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cell Line, Tumor , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Factor X/metabolism , Genetic Vectors/metabolism , Hepatocytes/pathology , Hepatocytes/virology , Humans , Immunoglobulin M/metabolism , Macrophages/metabolism , Mice , Molecular Sequence Data , Oncolytic Viruses/physiology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/virology , Pancreatic Stellate Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Stromal Cells/virology , Transduction, Genetic , Viral Tropism , Virus Replication
19.
Biochem Pharmacol ; 90(2): 97-106, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24832861

ABSTRACT

Oncolytic adenoviruses have been used in different preclinical and clinical studies, showing their capacity to kill tumor cells without major adverse events. However, these studies also underline the limitations of this approach. The efficacy of oncolytic adenoviruses is hampered by their limited ability to transduce some tumor types, their lack of selectivity, and their poor dissemination within tumors. In addition, the host immune response may limit oncolytic adenovirus efficacy. Combining oncolytic adenoviruses with chemotherapeutics constitutes an appealing strategy to increase their potency. The first part of this review describes the molecular basis of oncolytic adenoviruses, their use in preclinical studies and clinical trials, their limitations, and strategies to circumvent these limitations. The second part will focus on studies combining oncolytic adenoviruses with chemotherapeutic drugs, including standard chemotherapeutic drugs, molecularly targeted drugs, and other drugs that have been combined with oncolytic adenoviruses. Finally, based on these studies, we describe future directions and general rules that could be followed to identify chemotherapeutic drugs displaying additive/synergistic effects when combined with oncolytic adenoviruses.


Subject(s)
Adenoviridae/genetics , Genome, Viral , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Viral Proteins/genetics , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Combined Modality Therapy , Humans , Molecular Targeted Therapy , Neoplasms/pathology
20.
PLoS One ; 8(4): e62191, 2013.
Article in English | MEDLINE | ID: mdl-23638001

ABSTRACT

Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR) or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin) as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT) imaging of gene expression to determine whether local virus administration (direct injection in the kidney) could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.


Subject(s)
Adenoviridae/genetics , Adenoviridae/physiology , Adrenal Glands/metabolism , Adrenal Glands/virology , Blood Coagulation Factors/metabolism , Transduction, Genetic , Adrenal Glands/diagnostic imaging , Animals , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Factor X/metabolism , Female , Genetic Vectors/genetics , Kidney/diagnostic imaging , Kidney/virology , Mice , Mice, Inbred BALB C , Multimodal Imaging , Radionuclide Imaging , Warfarin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL