Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Dev Cell ; 59(10): 1333-1344.e4, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579717

ABSTRACT

Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.


Subject(s)
Arabidopsis , Cell Division , Microtubules , Plant Roots , Microtubules/metabolism , Arabidopsis/metabolism , Arabidopsis/cytology , Cell Division/physiology , Plant Roots/metabolism , Plant Roots/cytology , Plant Roots/growth & development , Cytoskeleton/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Biomechanical Phenomena
2.
Cells ; 12(12)2023 06 13.
Article in English | MEDLINE | ID: mdl-37371083

ABSTRACT

Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.


Subject(s)
Cytokinins , Indoleacetic Acids , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Nitrates , Plant Growth Regulators/metabolism , Plant Development
3.
Proc Natl Acad Sci U S A ; 119(31): e2122460119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878040

ABSTRACT

Mineral nutrition is one of the key environmental factors determining plant development and growth. Nitrate is the major form of macronutrient nitrogen that plants take up from the soil. Fluctuating availability or deficiency of this element severely limits plant growth and negatively affects crop production in the agricultural system. To cope with the heterogeneity of nitrate distribution in soil, plants evolved a complex regulatory mechanism that allows rapid adjustment of physiological and developmental processes to the status of this nutrient. The root, as a major exploitation organ that controls the uptake of nitrate to the plant body, acts as a regulatory hub that, according to nitrate availability, coordinates the growth and development of other plant organs. Here, we identified a regulatory framework, where cytokinin response factors (CRFs) play a central role as a molecular readout of the nitrate status in roots to guide shoot adaptive developmental response. We show that nitrate-driven activation of NLP7, a master regulator of nitrate response in plants, fine tunes biosynthesis of cytokinin in roots and its translocation to shoots where it enhances expression of CRFs. CRFs, through direct transcriptional regulation of PIN auxin transporters, promote the flow of auxin and thereby stimulate the development of shoot organs.


Subject(s)
Indoleacetic Acids , Nitrates , Cytokinins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Nitrates/metabolism , Plant Roots/metabolism , Plant Shoots , Signal Transduction , Soil
4.
Elife ; 102021 11 01.
Article in English | MEDLINE | ID: mdl-34723798

ABSTRACT

Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.


Subject(s)
Arabidopsis/physiology , Cell Polarity , Plant Roots/growth & development , Arabidopsis/growth & development , Models, Biological , Models, Chemical
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502129

ABSTRACT

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Subject(s)
Glucans/metabolism , Indoleacetic Acids/metabolism , Plant Cells/metabolism , Plant Development , Plant Physiological Phenomena , Xylans/metabolism , Arabidopsis/physiology , Cell Wall/metabolism , Fluorescent Antibody Technique , Gene Expression Regulation, Plant , Glucans/chemistry , Pisum sativum/physiology , Signal Transduction , Xylans/chemistry
6.
EMBO Rep ; 22(9): e51813, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34357701

ABSTRACT

Nitrate commands genome-wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild-type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post-translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Anion Transport Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mutation , Nitrates/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism
7.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917959

ABSTRACT

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , DNA Helicases/metabolism , Organogenesis, Plant/genetics , Plant Development/genetics , Plant Roots/physiology , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Promoter Regions, Genetic , Protein Binding , Signal Transduction
8.
Article in English | MEDLINE | ID: mdl-33558367

ABSTRACT

Plant fitness is largely dependent on the root, the underground organ, which, besides its anchoring function, supplies the plant body with water and all nutrients necessary for growth and development. To exploit the soil effectively, roots must constantly integrate environmental signals and react through adjustment of growth and development. Important components of the root management strategy involve a rapid modulation of the root growth kinetics and growth direction, as well as an increase of the root system radius through formation of lateral roots (LRs). At the molecular level, such a fascinating growth and developmental flexibility of root organ requires regulatory networks that guarantee stability of the developmental program but also allows integration of various environmental inputs. The plant hormone auxin is one of the principal endogenous regulators of root system architecture by controlling primary root growth and formation of LR. In this review, we discuss recent progress in understanding molecular networks where auxin is one of the main players shaping the root system and acting as mediator between endogenous cues and environmental factors.


Subject(s)
Indoleacetic Acids/isolation & purification , Organogenesis, Plant , Plant Development , Plant Roots/growth & development , Gene Regulatory Networks , Plant Roots/metabolism
9.
EMBO J ; 40(3): e106862, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33399250

ABSTRACT

Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Nitrogen/metabolism , Arabidopsis/metabolism , Biological Transport , Indoleacetic Acids/metabolism , Phosphorylation , Plant Roots/growth & development , Plant Roots/metabolism
10.
Plant Commun ; 1(3): 100048, 2020 05 11.
Article in English | MEDLINE | ID: mdl-33367243

ABSTRACT

Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Growth Regulators/metabolism , Biological Transport/genetics , Biological Transport/physiology , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plant Development/genetics , Plant Development/physiology , Plant Growth Regulators/genetics
11.
Nat Commun ; 11(1): 4285, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32855390

ABSTRACT

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.


Subject(s)
Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Cytokinins/metabolism , Endoplasmic Reticulum/metabolism , Fluorescent Dyes/chemistry , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Brefeldin A/pharmacology , Cytokinins/chemistry , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Meristem/cytology , Meristem/metabolism , Plants, Genetically Modified , Protein Kinases/genetics , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/drug effects
12.
EMBO J ; 39(17): e104238, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32667089

ABSTRACT

Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine-tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re-organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin-sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.


Subject(s)
Arabidopsis/growth & development , Cell Differentiation , Cell Proliferation , Cytokinins/metabolism , Microtubules/metabolism , Plant Roots/growth & development , Animals , Arabidopsis/genetics , Cytokinins/genetics , Microtubules/genetics , Plant Roots/genetics
13.
Proc Natl Acad Sci U S A ; 117(26): 15322-15331, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32541049

ABSTRACT

Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.


Subject(s)
Arabidopsis/physiology , Indoleacetic Acids/metabolism , Plant Cells/physiology , Plant Roots/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Division , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/antagonists & inhibitors , Kynurenine/pharmacology , Lasers , Phthalimides/pharmacology , Plant Cells/drug effects , Regeneration/drug effects , Regeneration/physiology , Signal Transduction/physiology , Triazoles/pharmacology
14.
J Exp Bot ; 71(15): 4480-4494, 2020 07 25.
Article in English | MEDLINE | ID: mdl-32428238

ABSTRACT

In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule in plant growth, development, and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). Here we show that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing the cell wall remodeling required for overlying tissue separation during LRP emergence. NRT1.1-mediated repression of both TAR2 and LAX3 is suppressed at high nitrate availability, resulting in nitrate induction of the TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously expected in regulating the nitrate response of root system architecture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Mutation , Nitrates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism
15.
Nat Commun ; 11(1): 2170, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358503

ABSTRACT

Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytokinins/metabolism , Disease Resistance/genetics , Indoleacetic Acids/metabolism , Membrane Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Transcriptome/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cell Wall/chemistry , Cell Wall/metabolism , Endosomes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Golgi Apparatus/metabolism , Membrane Proteins/genetics , Plant Roots/microbiology , Plants, Genetically Modified/metabolism , Plasmodiophorida/pathogenicity , Secretory Pathway/genetics , Soil , Vesicular Transport Proteins/metabolism
16.
Curr Opin Plant Biol ; 52: A1-A2, 2019 12.
Article in English | MEDLINE | ID: mdl-31787165
18.
Development ; 146(17)2019 09 12.
Article in English | MEDLINE | ID: mdl-31391194

ABSTRACT

The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.This article has an associated 'The people behind the papers' interview.


Subject(s)
Germination/physiology , Gravity Sensing/physiology , Hypocotyl/growth & development , Plant Roots/growth & development , Abscisic Acid/metabolism , Arabidopsis , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Meristem/growth & development , Plant Growth Regulators/metabolism , Plants, Genetically Modified , Seedlings/growth & development
19.
Cell ; 177(4): 957-969.e13, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31051107

ABSTRACT

Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing.


Subject(s)
Plant Roots/metabolism , Stem Cells/metabolism , Wound Healing/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Differentiation/physiology , Cell Division , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism , Regeneration/physiology , Signal Transduction/physiology , Transcription Factors/metabolism
20.
J Exp Bot ; 69(21): 5169-5176, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30312436

ABSTRACT

Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Cytokinins/metabolism , Ovule/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...