Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229244

ABSTRACT

Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled ß-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used 3D light-sheet imaging to analyze the location and Ca2+ activity of single ß-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized ß-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes 'hub cells', is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. ß-cells that initiate the Ca2+ wave ('leaders') are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the ß-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning 'leader' ß-cells.

2.
Nat Metab ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117960

ABSTRACT

Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as "first responders", "leaders" and "hubs", as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.

3.
J Biol Chem ; 300(9): 107611, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39074637

ABSTRACT

In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet ß-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced ß-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible ß-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced ß-cell death and have shown that inhibiting PKCδ protects pancreatic ß-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic ß-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay ß-cell death and preserve ß-cell function in T1D.

4.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Article in English | MEDLINE | ID: mdl-38739680

ABSTRACT

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Subject(s)
Islets of Langerhans , Islets of Langerhans/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Computational Biology/methods , Mice , Insulin/metabolism , Humans , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin Secretion/physiology , Models, Biological , Calcium/metabolism , Calcium Signaling/physiology
5.
Elife ; 122023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018905

ABSTRACT

Diabetes is caused by the inability of electrically coupled, functionally heterogeneous ß-cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have been used to represent synchronized oscillatory [Ca2+] dynamics and to study ß-cell subpopulations, which play an important role in driving islet function. The mechanism by which highly synchronized ß-cell subpopulations drive islet function is unclear. We used experimental and computational techniques to investigate the relationship between functional networks, structural (gap junction) networks, and intrinsic ß-cell dynamics in slow and fast oscillating islets. Highly synchronized subpopulations in the functional network were differentiated by intrinsic dynamics, including metabolic activity and KATP channel conductance, more than structural coupling. Consistent with this, intrinsic dynamics were more predictive of high synchronization in the islet functional network as compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These results indicate that intrinsic dynamics rather than structure drive connections in the functional network and highly synchronized subpopulations, but gap junctions are still essential for overall network efficiency. These findings deepen our interpretation of functional networks and the formation of functional subpopulations in dynamic tissues such as the islet.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Islets of Langerhans , Humans , Insulin-Secreting Cells/metabolism , Gap Junctions/metabolism , Islets of Langerhans/metabolism , Insulin Secretion , Diabetes Mellitus/metabolism
6.
J Physiol ; 601(18): 4053-4072, 2023 09.
Article in English | MEDLINE | ID: mdl-37578890

ABSTRACT

The secretion of insulin from ß-cells in the islet of Langerhans is governed by a series of metabolic and electrical events, which can fail during the progression of type 2 diabetes (T2D). ß-cells are electrically coupled via connexin-36 (Cx36) gap junction channels, which coordinates the pulsatile dynamics of [Ca2+ ] and insulin release across the islet. Factors such as pro-inflammatory cytokines and free fatty acids disrupt gap junction coupling under in vitro conditions. Here we test whether gap junction coupling and coordinated [Ca2+ ] dynamics are disrupted in T2D, and whether recovery of gap junction coupling can recover islet function. We examine islets from donors with T2D, from db/db mice, and islets treated with pro-inflammatory cytokines (TNF-α, IL-1ß, IFN-É£) or free fatty acids (palmitate). We modulate gap junction coupling using Cx36 over-expression or pharmacological activation via modafinil. We also develop a peptide mimetic (S293) of the c-terminal regulatory site of Cx36 designed to compete against its phosphorylation. Cx36 gap junction permeability and [Ca2+ ] dynamics were disrupted in islets from both human donors with T2D and db/db mice, and in islets treated with pro-inflammatory cytokines or palmitate. Cx36 over-expression, modafinil treatment and S293 peptide all enhanced Cx36 gap junction coupling and protected against declines in coordinated [Ca2+ ] dynamics. Cx36 over-expression and S293 peptide also reduced apoptosis induced by pro-inflammatory cytokines. Critically, S293 peptide rescued gap junction coupling and [Ca2+ ] dynamics in islets from both db/db mice and a sub-set of T2D donors. Thus, recovering or enhancing Cx36 gap junction coupling can improve islet function in diabetes. KEY POINTS: Connexin-36 (Cx36) gap junction permeability and associated coordination of [Ca2+ ] dynamics is diminished in human type 2 diabetes (T2D) and mouse models of T2D. Enhancing Cx36 gap junction permeability protects against disruptions to the coordination of [Ca2+ ] dynamics. A novel peptide mimetic of the Cx36 c-terminal regulatory region protects against declines in Cx36 gap junction permeability. Pharmacological elevation in Cx36 or Cx36 peptide mimetic recovers [Ca2+ ] dynamics and glucose-stimulated insulin secretion in human T2D and mouse models of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Mice , Animals , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Acids, Nonesterified/metabolism , Modafinil/metabolism , Connexins/metabolism , Insulin/metabolism , Gap Junctions/physiology , Insulin-Secreting Cells/metabolism , Cytokines/metabolism
7.
Mol Metab ; 66: 101632, 2022 12.
Article in English | MEDLINE | ID: mdl-36347424

ABSTRACT

OBJECTIVE: Zinc transporter 8 (ZnT8) is a major humoral target in human type 1 diabetes (T1D). Polymorphic variants of Slc30A8, which encodes ZnT8, are also associated with protection from type 2 diabetes (T2D). The current study examined whether ZnT8 might play a role beyond simply being a target of autoimmunity in the pathophysiology of T1D. METHODS: The phenotypes of NOD mice with complete or partial global loss of ZnT8 were determined using a combination of disease incidence, histological, transcriptomic, and metabolic analyses. RESULTS: Unexpectedly, while complete loss of ZnT8 accelerated spontaneous T1D, heterozygosity was partially protective. In vivo and in vitro studies of ZnT8 deficient NOD.SCID mice suggested that the accelerated disease was due to more rampant autoimmunity. Conversely, beta cells in heterozygous animals uniquely displayed increased mitochondrial fitness under mild proinflammatory conditions. CONCLUSIONS: In pancreatic beta cells and immune cell populations, Zn2+ plays a key role as a regulator of redox signaling and as an independent secondary messenger. Importantly, Zn2+ also plays a major role in maintaining mitochondrial homeostasis. Our results suggest that regulating mitochondrial fitness by altering intra-islet zinc homeostasis may provide a novel mechanism to modulate T1D pathophysiology.


Subject(s)
Cation Transport Proteins , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Zinc Transporter 8/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Haploinsufficiency/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Mice, Inbred NOD , Mice, SCID , Respiration
8.
PLoS Biol ; 20(9): e3001761, 2022 09.
Article in English | MEDLINE | ID: mdl-36099294

ABSTRACT

Insulin-secreting ß-cells are functionally heterogeneous. Whether there exist cells driving the first-phase calcium response in individual islets, has not been examined. We examine "first responder" cells, defined by the earliest [Ca2+] response during first-phase [Ca2+] elevation, distinct from previously identified "hub" and "leader" cells. We used islets isolated from Mip-CreER; Rosa-Stop-Lox-Stop-GCamP6s mice (ß-GCamP6s) that show ß-cell-specific GCamP6s expression following tamoxifen-induced CreER-mediated recombination. First responder cells showed characteristics of high membrane excitability and lower electrical coupling to their neighbors. The first-phase response time of ß-cells in the islet was spatially organized, dependent on the cell's distance to the first responder cell, and consistent over time up to approximately 24 h. When first responder cells were laser ablated, the first-phase [Ca2+] was slowed down, diminished, and discoordinated compared to random cell ablation. Cells that were next earliest to respond often took over the role of the first responder upon ablation. In summary, we discover and characterize a distinct first responder ß-cell state, critical for the islet first-phase response to glucose.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Calcium/metabolism , Glucose/metabolism , Glucose/pharmacology , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , Tamoxifen/metabolism
9.
Front Physiol ; 13: 913611, 2022.
Article in English | MEDLINE | ID: mdl-35837011

ABSTRACT

In type 1 diabetes (T1D), islet dysfunction occurs prior to diabetes onset. Pro-inflammatory cytokines can disrupt insulin secretion and Ca2+ homeostasis. Connexin36 (Cx36) gap junctions electrically couple ß-cells to coordinate glucose-stimulated Ca2+ and insulin secretion. Cx36 gap junction coupling can also protect against cytokine-induced apoptosis. Our goal was to determine how islet gap junction coupling and Ca2+ dynamics are altered in mouse models of T1D prior to diabetes. Glucose tolerance was assessed in NOD and immunodeficient NOD-RAG1KO mice at 6-12 weeks age. Glucose-stimulated insulin secretion, Ca2+ dynamics, and gap junction coupling were measured in islets isolated at each age. Gap junction coupling was also measured in islets from mice that underwent transfer of diabetogenic splenocytes and from chromograninA knockout NOD mice. Cell death was measured in islets isolated from wild-type, Cx36 knockout or Cx36 over-expression mice, each treated with a cocktail of pro-inflammatory cytokines and KATP or SERCA activators/inhibitors. NOD mice over-expressing Cx36 were also monitored for diabetes development, and islets assessed for insulitis and apoptosis. NOD and NOD-RAG1KO controls showed similar glucose tolerance at all ages. Ca2+ dynamics and gap junction coupling were disrupted in islets of NOD mice at 9 weeks, compared to controls. Transfer of diabetogenic splenocytes also decreased gap junction coupling. Islets from chromograninA knockout mice displayed normal coupling. Overexpression of Cx36 protected islets from cytokine-induced apoptosis. A knockout of Cx36 amplified cytokine-induced apoptosis, which was reversed by KATP activation or SERCA activation. Cx36 overexpression in NOD mice delayed diabetes development compared to NOD controls. However, apoptosis and insulitis were not improved. Decreases in islet gap junction coupling occur prior to T1D onset. Such decreases alter islet susceptibility to apoptosis due to altered Ca2+. Future studies will determine if increasing Cx36 gap junction coupling in combination with restoring Ca2+ homeostasis protects against islet decline in T1D.

11.
Ultrasound Med Biol ; 48(7): 1336-1347, 2022 07.
Article in English | MEDLINE | ID: mdl-35473669

ABSTRACT

In type 1 diabetes (T1D), immune-cell infiltration into islets of Langerhans (insulitis) and ß-cell decline occur years before diabetes presents. There is a lack of validated clinical approaches for detecting insulitis and ß-cell decline, to diagnose eventual diabetes and monitor the efficacy of therapeutic interventions. We previously determined that contrast-enhanced ultrasound measurements of pancreas perfusion dynamics predict disease progression in T1D pre-clinical models. Here, we test whether these measurements predict therapeutic prevention of T1D. We performed destruction-reperfusion measurements with size-isolated microbubbles in non-obese diabetic (NOD)-severe combined immunodeficiency (SCID) mice receiving an adoptive transfer of diabetogenic splenocytes. Mice received vehicle control or the following treatments: (i) anti-CD3 to block T-cell activation; (ii) anti-CD4 to deplete CD4+ T cells; (iii) verapamil to reduce ß-cell apoptosis; or (iv) tauroursodeoxycholic acid (TUDCA) to reduce ß-cell endoplasmic reticulum stress. We compared measurements of pancreas perfusion dynamics with subsequent progression to diabetes. Anti-CD3, anti-CD4, and verapamil delayed diabetes development. Blood flow dynamics was significantly altered in treated mice with delayed/absent diabetes development compared with untreated mice. Conversely, blood flow dynamics in treated mice with unchanged diabetes development was similar to that in untreated mice. Thus, measurement of pancreas perfusion dynamics predicts the successful prevention of diabetes. This strategy may provide a clinically deployable predictive marker for therapeutic prevention in asymptomatic T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Animals , Islets of Langerhans/diagnostic imaging , Mice , Mice, Inbred NOD , Mice, SCID , Pancreas/diagnostic imaging , Perfusion , Ultrasonography , Verapamil
12.
Mol Metab ; 57: 101430, 2022 03.
Article in English | MEDLINE | ID: mdl-34979329

ABSTRACT

OBJECTIVE: Diabetes occurs because of insufficient insulin secretion due to ß-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger ß-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the ß-cell. However, the link between the regulation of ß-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to ß-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS: In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate ß-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS: Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS: This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Animals , Cell Communication , Diabetes Mellitus, Type 2/metabolism , Gap Junctions/metabolism , Islets of Langerhans/metabolism , Mice , Transcription, Genetic
13.
Nat Biotechnol ; 40(3): 364-373, 2022 03.
Article in English | MEDLINE | ID: mdl-34608326

ABSTRACT

Mapping the localization of multiple proteins in their native three-dimensional (3D) context would be useful across many areas of biomedicine, but multiplexed fluorescence imaging has limited intrinsic multiplexing capability, and most methods for increasing multiplexity can only be applied to thin samples (<100 µm). Here, we harness the narrow spectrum of Raman spectroscopy and introduce Raman dye imaging and tissue clearing (RADIANT), an optical method that is capable of imaging multiple targets in thick samples in one shot. We expanded the range of suitable bioorthogonal Raman dyes and developed a tissue-clearing strategy for them (Raman 3D imaging of solvent-cleared organs (rDISCO)). We applied RADIANT to image up to 11 targets in millimeter-thick brain slices, extending the imaging depth 10- to 100-fold compared to prior multiplexed protein imaging methods. We showcased the utility of RADIANT in extracting systems information, including region-specific correlation networks and their topology in cerebellum development. RADIANT will facilitate the exploration of the intricate 3D protein interactions in complex systems.


Subject(s)
Coloring Agents , Optical Imaging , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Optical Imaging/methods
14.
Nat Rev Endocrinol ; 18(1): 9-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34667280

ABSTRACT

Endocrine cells within the pancreatic islets of Langerhans are heterogeneous in terms of transcriptional profile, protein expression and the regulation of hormone release. Even though this heterogeneity has long been appreciated, only within the past 5 years have detailed molecular analyses led to an improved understanding of its basis. Although we are beginning to recognize why some subpopulations of endocrine cells are phenotypically different to others, arguably the most important consideration is how this heterogeneity affects the regulation of hormone release to control the homeostasis of glucose and other energy-rich nutrients. The focus of this Review is the description of how endocrine cell heterogeneity (and principally that of insulin-secreting ß-cells) affects the regulation of hormone secretion within the islets of Langerhans. This discussion includes an overview of the functional characteristics of the different islet cell subpopulations and describes how they can communicate to influence islet function under basal and glucose-stimulated conditions. We further discuss how changes to the specific islet cell subpopulations or their numbers might underlie islet dysfunction in type 2 diabetes mellitus. We conclude with a discussion of several key open questions regarding the physiological role of islet cell heterogeneity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism
15.
Diabetes ; 2021 11 13.
Article in English | MEDLINE | ID: mdl-34957490

ABSTRACT

One hundred years have passed since the discovery of insulin-an achievement that transformed diabetes from a fatal illness into a manageable chronic condition. The decades since that momentous achievement have brought ever more rapid innovation and advancement in diabetes research and clinical care. To celebrate the important work of the past century and help to chart a course for its continuation into the next, the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases recently held a joint international symposium, bringing together a cohort of researchers with diverse interests and backgrounds from both countries and beyond to discuss their collective quest to better understand the heterogeneity of diabetes and thus gain insights to inform new directions in diabetes treatment and prevention. This article summarizes the proceedings of that symposium, which spanned cutting-edge research into various aspects of islet biology, the heterogeneity of diabetic phenotypes, and the current state of and future prospects for precision medicine in diabetes.

16.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607942

ABSTRACT

Type 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing ß cells within the pancreatic islets of Langerhans (insulitis). Early diagnosis during presymptomatic T1D would allow for therapeutic intervention prior to substantial ß-cell loss at onset. There are limited methods to track the progression of insulitis and ß-cell mass decline. During insulitis, the islet microvasculature increases permeability, such that submicron-sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Submicron nanodroplet (ND) phase-change agents can be vaporized into micron-sized bubbles, serving as a microbubble precursor. We tested whether NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in nonobese diabetic (NOD) mice and NOD;Rag1ko controls and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10-wk-old NOD mice following ND infusion and vaporization but was absent in both the noninfiltrated kidney of NOD mice and the pancreas of Rag1ko controls. High-contrast elevation also correlated with rapid diabetes onset. Elevated contrast was also observed as early as 4 wk, prior to mouse insulin autoantibody detection. In the pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression, to guide and assess preventative therapeutic interventions for T1D.


Subject(s)
Contrast Media/chemistry , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/pathology , Islets of Langerhans/blood supply , Ultrasonography/methods , Animals , Autoantibodies/analysis , Early Diagnosis , Female , Homeodomain Proteins/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Microbubbles
17.
Diabetes ; 70(11): 2554-2567, 2021 11.
Article in English | MEDLINE | ID: mdl-34380694

ABSTRACT

Stem cell-derived ß-like cells (sBC) carry the promise of providing an abundant source of insulin-producing cells for use in cell replacement therapy for patients with diabetes, potentially allowing widespread implementation of a practical cure. To achieve their clinical promise, sBC need to function comparably with mature adult ß-cells, but as yet they display varying degrees of maturity. Indeed, detailed knowledge of the events resulting in human ß-cell maturation remains obscure. Here we show that sBC spontaneously self-enrich into discreet islet-like cap structures within in vitro cultures, independent of exogenous maturation conditions. Multiple complementary assays demonstrate that this process is accompanied by functional maturation of the self-enriched sBC (seBC); however, the seBC still contain distinct subpopulations displaying different maturation levels. Interestingly, the surface protein ENTPD3 (also known as nucleoside triphosphate diphosphohydrolase-3 [NDPTase3]) is a specific marker of the most mature seBC population and can be used for mature seBC identification and sorting. Our results illuminate critical aspects of in vitro sBC maturation and provide important insights toward developing functionally mature sBC for diabetes cell replacement therapy.


Subject(s)
Adenosine Triphosphatases/metabolism , Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Adenosine Triphosphatases/genetics , Calcium/metabolism , DNA, Mitochondrial , Gene Expression Regulation , Humans , Transcriptome
18.
PLoS Comput Biol ; 17(5): e1008948, 2021 05.
Article in English | MEDLINE | ID: mdl-33939712

ABSTRACT

The islets of Langerhans exist as multicellular networks that regulate blood glucose levels. The majority of cells in the islet are excitable, insulin-producing ß-cells that are electrically coupled via gap junction channels. ß-cells are known to display heterogeneous functionality. However, due to gap junction coupling, ß-cells show coordinated [Ca2+] oscillations when stimulated with glucose, and global quiescence when unstimulated. Small subpopulations of highly functional ß-cells have been suggested to control [Ca2+] dynamics across the islet. When these populations were targeted by optogenetic silencing or photoablation, [Ca2+] dynamics across the islet were largely disrupted. In this study, we investigated the theoretical basis of these experiments and how small populations can disproportionality control islet [Ca2+] dynamics. Using a multicellular islet model, we generated normal, skewed or bimodal distributions of ß-cell heterogeneity. We examined how islet [Ca2+] dynamics were disrupted when cells were targeted via hyperpolarization or populations were removed; to mimic optogenetic silencing or photoablation, respectively. Targeted cell populations were chosen based on characteristics linked to functional subpopulation, including metabolic rate of glucose oxidation or [Ca2+] oscillation frequency. Islets were susceptible to marked suppression of [Ca2+] when ~10% of cells with high metabolic activity were hyperpolarized; where hyperpolarizing cells with normal metabolic activity had little effect. However, when highly metabolic cells were removed from the model, [Ca2+] oscillations remained. Similarly, when ~10% of cells with either the highest frequency or earliest elevations in [Ca2+] were removed from the islet, the [Ca2+] oscillation frequency remained largely unchanged. Overall, these results indicate small populations of ß-cells with either increased metabolic activity or increased frequency are unable to disproportionately control islet-wide [Ca2+] via gap junction coupling. Therefore, we need to reconsider the physiological basis for such small ß-cell populations or the mechanism by which they may be acting to control normal islet function.


Subject(s)
Calcium/metabolism , Cell Communication/physiology , Gap Junctions/physiology , Insulin-Secreting Cells/metabolism , Animals , Insulin-Secreting Cells/cytology
19.
Sci Rep ; 11(1): 3670, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574598

ABSTRACT

Previous studies have demonstrated stimulation of endocrine pancreas function by vagal nerve electrical stimulation. While this increases insulin secretion, expected concomitant reductions in circulating glucose do not occur. A complicating factor is the non-specific nature of electrical nerve stimulation. Optogenetic tools, however, provide the potential for cell-type specific neural stimulation using genetic targeting and/or spatially shaped excitation light. Here, we demonstrate light-activated stimulation of the endocrine pancreas by targeting parasympathetic (cholinergic) axons. In a mouse model expressing ChannelRhodopsin2 (ChR2) in cholinergic cells, serum insulin and glucose were measured in response to (1) ultrasound image-guided optical stimulation of axon terminals in the pancreas or (2) optical stimulation of axons of the cervical vagus nerve. Measurements were made in basal-glucose and glucose-stimulated conditions. Significant increases in plasma insulin occurred relative to controls under both pancreas and cervical vagal stimulation, while a rapid reduction in glycemic levels were observed under pancreatic stimulation. Additionally, ultrasound-based measurements of blood flow in the pancreas were increased under pancreatic stimulation. Together, these results demonstrate the utility of in-vivo optogenetics for studying the neural regulation of endocrine pancreas function and suggest its therapeutic potential for the control of insulin secretion and glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Vagus Nerve/metabolism , Animals , Axons/metabolism , Blood Glucose/genetics , Channelrhodopsins/genetics , Choline O-Acetyltransferase/genetics , Cholinergic Fibers/drug effects , Cholinergic Fibers/pathology , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Glucagon/metabolism , Glucose/metabolism , Humans , Insulin/biosynthesis , Insulin/radiation effects , Insulin Secretion/genetics , Insulin Secretion/radiation effects , Islets of Langerhans/radiation effects , Mice , Optogenetics/trends , Pancreas/pathology , Vagus Nerve/pathology , Vagus Nerve Stimulation
20.
Langmuir ; 37(7): 2386-2396, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33566623

ABSTRACT

Nanodrops comprising a perfluorocarbon liquid core can be acoustically vaporized into echogenic microbubbles for ultrasound imaging. Packaging the microbubble in its condensed liquid state provides some advantages, including in situ activation of the acoustic signal, longer circulation persistence, and the advent of expanded diagnostic and therapeutic applications in pathologies which exhibit compromised vasculature. One obstacle to clinical translation is the inability of the limited surfactant present on the nanodrop to encapsulate the greatly expanded microbubble interface, resulting in ephemeral microbubbles with limited utility. In this study, we examine a biomimetic approach to stabilize an expanding gas surface by employing the lung surfactant replacement, beractant. Lung surfactant contains a suite of lipids and proteins that provide efficient shuttling of material from bilayer folds to the monolayer surface. We hypothesized that beractant would improve stability of acoustically vaporized microbubbles. To test this hypothesis, we characterized beractant surface dilation mechanics and revealed a novel biophysical phenomenon of rapid interfacial melting, spreading, and resolidification. We then harnessed this unique functionality to increase the stability and echogenicity of microbubbles produced after acoustic droplet vaporization for in vivo ultrasound imaging. Such biomimetic lung surfactant-stabilized nanodrops may be useful for applications in ultrasound imaging and therapy.


Subject(s)
Biomimetics , Contrast Media , Lung , Microbubbles , Surface-Active Agents , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL