Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Glia ; 72(6): 1067-1081, 2024 Jun.
Article En | MEDLINE | ID: mdl-38497356

Alzheimer's Disease (AD) pathogenesis is thought to begin up to 20 years before cognitive symptoms appear, suggesting the need for more sensitive diagnostic biomarkers of AD. In this report, we demonstrated pathological changes in retinal Müller glia significantly earlier than amyloid pathology in AD mouse models. By utilizing the knock-in NLGF mouse model, we surprisingly discovered an increase in reticulon 3 (RTN3) protein levels in the NLGF retina as early as postnatal day 30 (P30). Despite RTN3 being a canonically neuronal protein, this increase was noted in the retinal Müller glia, confirmed by immunohistochemical characterization. Further unbiased transcriptomic assays of the P30 NLGF retina revealed that retinal Müller glia were the most sensitive responding cells in this mouse retina, compared with other cell types including photoreceptor cells and ganglion neurons. Pathway analyses of differentially expressed genes in glia cells showed activation of ER stress response via the upregulation of unfolded protein response (UPR) proteins such as ATF4 and CHOP. Early elevation of RTN3 in response to challenges by toxic Aß likely facilitated UPR. Altogether, these findings suggest that Müller glia act as a sentinel for AD pathology in the retina and should aid for both intervention and diagnosis.


Alzheimer Disease , Animals , Mice , Alzheimer Disease/pathology , Retina , Neurons/metabolism , Disease Models, Animal , Amyloidogenic Proteins/metabolism , Neuroglia/metabolism , Brain/metabolism , Ependymoglial Cells/metabolism
3.
Hum Mol Genet ; 32(7): 1193-1207, 2023 03 20.
Article En | MEDLINE | ID: mdl-36370042

Beta amyloid cleaving enzyme 1 (BACE1) is largely expressed by neurons and is the sole ß-secretase for initiating the production of neuronal ß-amyloid peptides (Aß). To fully understand the physiological functions of neuronal BACE1, we used mouse genetic approach coupled with unbiased single nucleus RNA sequencing (snRNAseq) to investigate how targeted deletion of Bace1 in neurons, driven by Thy-1-Cre recombinase, would affect functions in the nervous system. Our transcriptome results revealed that BACE1 is essential for maturation of neural precursor cells and oligodendrocytes in mice. RNA velocity analysis confirmed deficit in the trajectory of neuroblasts in reaching the immature granule neuron state in young Bace1fl/fl; Thy1-cre mice. Further analysis of differential gene expression indicated changes in genes important for SNARE signaling, tight junction signaling, synaptogenesis and insulin secretion pathways. Morphological studies revealed a hypomyelination in Bace1fl/fl;Thy1-cre sciatic nerves, but no detectable myelination changes in the corpus callosum, despite clear reduction in myelination proteins in the brain. Functional studies showed reduction in long-term potential, defects in synaptogenesis and learning behavioral. Altogether, our results show that neuronal BACE1 is critical for optimal development of central and peripheral nervous system, and inhibition of neuronal BACE1 will result in deficits in synaptic functions and cognitive behaviors.


Alzheimer Disease , Neural Stem Cells , Mice , Animals , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Amyloid beta-Peptides/metabolism , Oligodendroglia/metabolism , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism
4.
J Biol Chem ; 298(11): 102532, 2022 11.
Article En | MEDLINE | ID: mdl-36162508

CX3CL1, also known as fractalkine, is best known for its signaling activity through interactions with its cognate receptor CX3CR1. However, its intrinsic function that is independent of interaction with CX3CR1 remains to be fully understood. We demonstrate that the intracellular domain of CX3CL1 (CX3CL1-ICD), generated upon sequential cleavages by α-/ß-secretase and γ-secretase, initiates a back signaling activity, which mediates direct signal transmission to gene expression in the nucleus. To study this, we fused a synthetic peptide derived from CX3CL1-ICD, named Tet34, with a 13-amino acid tetanus sequence at the N terminus to facilitate translocation into neuronal cells. We show that treatment of mouse neuroblastoma Neuro-2A cells with Tet34, but not its scrambled control (Tet34s), induced cell proliferation, as manifested by changes in protein levels of transcription factors and progrowth molecules cyclin D1, PCNA, Sox5, and Cdk2. Further biochemical assays reveal elevation of phosphorylated insulin receptor ß subunit, insulin-like growth factor-1 receptor ß subunit, and insulin receptor substrates as well as activation of proliferation-linked kinase AKT. In addition, transgenic mice overexpressing membrane-anchored C-terminal CX3CL1 also exhibited activation of insulin/insulin-like growth factor-1 receptor signaling. Remarkably, we found that this Tet34 peptide, but not Tet34s, protected against endoplasmic reticulum stress and cellular apoptosis when Neuro-2A cells were challenged with toxic oligomers of ß-amyloid peptide or hydrogen peroxide. Taken together, our results suggest that CX3CL1-ICD may have translational potential for neuroprotection in Alzheimer's disease and for disorders resulting from insulin resistance.


Chemokine CX3CL1 , Neuroprotection , Receptor, Insulin , Receptors, Somatomedin , Animals , Mice , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1 , Mice, Transgenic , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Receptors, Somatomedin/genetics , Receptors, Somatomedin/metabolism
5.
Sci Adv ; 8(24): eabo1286, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35714196

BACE-1 is required for generating ß-amyloid (Aß) peptides in Alzheimer's disease (AD). Here, we report that microglial BACE-1 regulates the transition of homeostatic to stage 1 disease-associated microglia (DAM-1) signature. BACE-1 deficiency elevated levels of transcription factors including Jun, Jund, Btg2, Erg1, Junb, Fos, and Fosb in the transition signature, which transition from more homeostatic to highly phagocytic DAM-1. Consistently, similar transition-state microglia in human AD brains correlated with lowered levels of BACE-1 expression. Targeted deletion of Bace-1 in adult 5xFAD mice microglia elevated these phagocytic microglia, correlated with significant reduction in amyloid plaques without synaptic toxicity. Silencing or pharmacologically inhibiting BACE-1 in cultured microglia-derived cells shows higher phagocytic function in microglia. Mechanistic exploration suggests that abolished cleavage of IL-1R2 and Toll-like receptors via BACE-1 inhibition contributes to the enhanced signaling via the PI3K and p38 MAPK kinase pathway. Together, targeted inhibition of BACE-1 in microglia may offer AD treatment.

...