Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Cells ; 12(18)2023 Sep 18.
Article En | MEDLINE | ID: mdl-37759522

Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.

2.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36290678

Anthracycline-induced cardiotoxicity is the most severe collateral effect of chemotherapy originated by an excess of oxidative stress in cardiomyocytes that leads to cardiac dysfunction. We assessed clinical data from patients with breast cancer receiving anthracyclines and searched for discriminating microRNAs between patients that developed cardiotoxicity (cases) and those that did not (controls), using RNA sequencing and regression analysis. Serum levels of 25 microRNAs were differentially expressed in cases versus controls within the first year after anthracycline treatment, as assessed by three different regression models (elastic net, Robinson and Smyth exact negative binomial test and random forest). MiR-4732-3p was the only microRNA identified in all regression models and was downregulated in patients that experienced cardiotoxicity. MiR-4732-3p was also present in neonatal rat cardiomyocytes and cardiac fibroblasts and was modulated by anthracycline treatment. A miR-4732-3p mimic was cardioprotective in cardiac and fibroblast cultures, following doxorubicin challenge, in terms of cell viability and ROS levels. Notably, administration of the miR-4732-3p mimic in doxorubicin-treated rats preserved cardiac function, normalized weight loss, induced angiogenesis, and decreased apoptosis, interstitial fibrosis and cardiac myofibroblasts. At the molecular level, miR-4732-3p regulated genes of TGFß and Hippo signaling pathways. Overall, the results indicate that miR-4732-3p is a novel biomarker of cardiotoxicity that has therapeutic potential against anthracycline-induced heart damage.

3.
Antioxidants (Basel) ; 11(5)2022 Apr 29.
Article En | MEDLINE | ID: mdl-35624750

Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.

5.
Sci Rep ; 12(1): 146, 2022 01 07.
Article En | MEDLINE | ID: mdl-34997006

Clinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.


Cell Nucleus/metabolism , Cytoplasm/metabolism , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Proteome , Proteomics , Cell Movement , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Oxidative Stress , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Signal Transduction
6.
Cells ; 10(10)2021 09 28.
Article En | MEDLINE | ID: mdl-34685551

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.


Hepatocyte Growth Factor/metabolism , Insulin-Like Growth Factor I/metabolism , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Stem Cells/metabolism , Animals , Disease Models, Animal , Female , Myocardial Infarction/physiopathology , Swine
7.
Stem Cells Int ; 2020: 8872009, 2020.
Article En | MEDLINE | ID: mdl-33101423

Human bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely linked to a more pronounced cell adhesion expression program.

8.
Stem Cell Res Ther ; 10(1): 152, 2019 05 31.
Article En | MEDLINE | ID: mdl-31151405

BACKGROUND: Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine. METHODS: The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an intracoronary (IC) infusion of vehicle (CON), 25 × 106 pCPC (25 M), or 50 × 106 pCPC (50 M). Animals were followed up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling (left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of 18F-FDG-labeled pCPC was also performed 4 h after infarction in a different subset of animals. RESULTS: Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 ± 10.0% in CON, 46.5 ± 7.4% in 25 M, and 50.2 ± 4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a significantly higher myocardial salvage index in both treated groups (0.35 ± 0.20 in CON; 0.61 ± 0.20, p = 0.04, in 25 M; and 0.63 ± 0.17, p = 0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product. CONCLUSIONS: IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe, and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI clinical trial (NCT02439398).


Myocytes, Cardiac/transplantation , Acute Disease , Animals , Disease Models, Animal , Myocardial Infarction , Swine , Transplantation, Homologous
9.
Redox Biol ; 22: 101156, 2019 04.
Article En | MEDLINE | ID: mdl-30851670

Adult progenitor cells reside in specialized microenvironments which maintain their undifferentiated cell state and trigger regenerative responses following injury. Although these environments are well described in several tissues, the cellular components that comprise the cardiac environment where progenitor cells are located remain unknown. Here we use Bmi1CreERT and Bmi1GFP mice as genetic tools to trace cardiac damage-responsive cells throughout the mouse lifespan. In adolescent mice, Bmi1+ damage-responsive cells are broadly distributed throughout the myocardium. In adult mice, however, Bmi1+ cells are confined predominately in perivascular areas with low levels of reactive oxygen species (ROS) and their number decline in an age-dependent manner. In vitro co-culture experiments with endothelial cells supported a regulatory role of the endothelium in damage-responsive cell behavior. Accordingly, in vivo genetic decrease of ROS levels in adult heart disengaged Bmi1+ cells from the cardiovascular network, recapitulating an adolescent-like Bmi1 expression profile. Thus, we identify cardiac perivascular regions as low-stress microenvironments that favor the maintenance of adult damage-responsive cells.


Myocardium/metabolism , Oxidative Stress , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Age Factors , Animals , Capillary Permeability , Cell Proliferation , Endothelial Cells/metabolism , Immunohistochemistry , Mice , Mice, Transgenic , Oxidative Stress/genetics , Polycomb Repressive Complex 1/genetics , Proto-Oncogene Proteins/genetics , Reactive Oxygen Species/metabolism
10.
Sci Rep ; 9(1): 4647, 2019 03 15.
Article En | MEDLINE | ID: mdl-30874584

Adult cardiac progenitor/stem cells (CPC/CSC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Assisted by complementary RNAseq analysis, we defined the fraction of the CPC proteome associable with specific functions by comparison with human bone marrow mesenchymal stem cells (MSC), the reference population for cell therapy, and human dermal fibroblasts (HDF), as a distant reference. Label-free proteomic analysis identified 526 proteins expressed differentially in CPC. iTRAQ analysis confirmed differential expression of a substantial proportion of those proteins in CPC relative to MSC, and systems biology analysis defined a clear overrepresentation of several categories related to enhanced angiogenic potential. The CPC plasma membrane compartment comprised 1,595 proteins, including a minimal signature of 167 proteins preferentially or exclusively expressed by CPC. CDH5 (VE-cadherin),  OX2G (OX-2 membrane glycoprotein; CD200), GPR4 (G protein-coupled receptor 4), CACNG7 (calcium voltage-gated channel auxiliary subunit gamma 7) and F11R (F11 receptor; junctional adhesion molecule A; JAM-A; CD321) were selected for validation. Their differential expression was confirmed both in expanded CPC batches and in early stages of isolation, particularly when compared against cardiac fibroblasts. Among them, GPR4 demonstrated the highest discrimination capacity between all cell lineages analyzed.


Cell Differentiation/physiology , Heart/growth & development , Myocytes, Cardiac/metabolism , Adult , Antigens, CD , Biomarkers , Cadherins , Calcium Channels , Cell Adhesion Molecules , Gene Expression Profiling/methods , Humans , Mesenchymal Stem Cells/metabolism , Multipotent Stem Cells/metabolism , Proteome/genetics , Proteomics/methods , Receptors, Cell Surface , Receptors, G-Protein-Coupled , Transcriptome/genetics
12.
PLoS One ; 13(11): e0206534, 2018.
Article En | MEDLINE | ID: mdl-30395586

BACKGROUND: Human adult adipose-derived stem cells (hADSCs) have become the most promising cell source for regenerative medicine. However the prolonged ex vivo expansion periods required to obtain the necessary therapeutic dose promotes progressive senescence, with the concomitant reduction of their therapeutic potential. AIM AND SCOPE: A better understanding of the determinants of hADSC senescence is needed to improve biosafety while preserving therapeutic efficiency. Here, we investigated the association between deregulation of the imprinted DLK1-DIO3 region and replicative senescence in hADSC cultures. METHODS: We compared hADSC cultures at short (PS) and prolonged (PL) passages, both in standard and low [O2] (21 and 3%, respectively), in relation to replicative senescence. hADSCs were evaluated for expression alterations in the DLK1-DIO3 region on chromosome 14q32, and particularly in its main miRNA cluster. RESULTS: Comparison of hADSCs cultured at PL or PS surprisingly showed a quite significant fraction (69%) of upregulated miRNAs in PL cultures mapping to the imprinted 14q32 locus, the largest miRNA cluster described in the genome. In agreement, expression of the lncRNA MEG3 (Maternally Expressed 3; Meg3/Gtl2), cultured at 21 and 3% [O2], was also significantly higher in PL than in PS passages. During hADSC replicative senescence the AcK16H4 activating mark was found to be significantly associated with the deregulation of the entire DLK1-DIO3 locus, with a secondary regulatory role for the methylation of DMR regions. CONCLUSION: A direct relationship between DLK1-DIO3 deregulation and replicative senescence of hADSCs is reported, involving upregulation of a very significant fraction of its largest miRNA cluster (14q32.31), paralleled by the progressive overexpression of the lncRNA MEG3, which plays a central role in the regulation of Dlk1/Dio3 activation status in mice.


Genomic Imprinting , Intercellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/genetics , Membrane Proteins/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Calcium-Binding Proteins , Cell Proliferation/genetics , Cells, Cultured , Cellular Senescence/genetics , Chromosomes, Human, Pair 14/genetics , Epigenesis, Genetic , Gene Expression Regulation , Humans , Mice , MicroRNAs/genetics , Up-Regulation
13.
Arterioscler Thromb Vasc Biol ; 38(9): 2160-2173, 2018 09.
Article En | MEDLINE | ID: mdl-29930004

Objective- Cardiac progenitor cells reside in the heart in adulthood, although their physiological relevance remains unknown. Here, we demonstrate that after myocardial infarction, adult Bmi1+ (B lymphoma Mo-MLV insertion region 1 homolog [PCGF4]) cardiac cells are a key progenitor-like population in cardiac neovascularization during ventricular remodeling. Approach and Results- These cells, which have a strong in vivo differentiation bias, are a mixture of endothelial- and mesenchymal-related cells with in vitro spontaneous endothelial cell differentiation capacity. Genetic lineage tracing analysis showed that heart-resident Bmi1+ progenitor cells proliferate after acute myocardial infarction and differentiate to generate de novo cardiac vasculature. In a mouse model of induced myocardial infarction, genetic ablation of these cells substantially deteriorated both heart angiogenesis and the ejection fraction, resulting in an ischemic-dilated cardiac phenotype. Conclusions- These findings imply that endothelial-related Bmi1+ progenitor cells are necessary for injury-induced neovascularization in adult mouse heart and highlight these cells as a suitable therapeutic target for preventing dysfunctional left ventricular remodeling after injury.


Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Neovascularization, Pathologic , Polycomb Repressive Complex 1/physiology , Stem Cells/pathology , Stem Cells/physiology , Ventricular Remodeling , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-kit/metabolism , Transcription Factors/metabolism
14.
Cell Death Differ ; 25(4): 809-822, 2018 03.
Article En | MEDLINE | ID: mdl-29323265

Accumulation of reactive oxygen species (ROS) is associated with several cardiovascular pathologies and with cell cycle exit by neonanatal cardiomyocytes, a key limiting factor in the regenerative capacity of the adult mammalian heart. The polycomb complex component BMI1 is linked to adult progenitors and is an important partner in DNA repair and redox regulation. We found that high BMI1 expression is associated with an adult Sca1+ cardiac progenitor sub-population with low ROS levels. In homeostasis, BMI1 repressed cell fate genes, including a cardiogenic differentiation program. Oxidative damage nonetheless modified BMI1 activity in vivo by derepressing canonical target genes in favor of their antioxidant and anticlastogenic functions. This redox-mediated mechanism is not restricted to damage situations, however, and we report ROS-associated differentiation of cardiac progenitors in steady state. These findings demonstrate how redox status influences the cardiac progenitor response, and identify redox-mediated BMI1 regulation with implications in maintenance of cellular identity in vivo.


Adult Stem Cells/metabolism , Cell Differentiation , Myocardium/metabolism , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species/metabolism , Adult Stem Cells/cytology , Animals , Mice , Mice, Transgenic , Myocardium/cytology , Oxidation-Reduction , Polycomb Repressive Complex 1/genetics , Proto-Oncogene Proteins/genetics
15.
Sci Rep ; 7(1): 12490, 2017 10 02.
Article En | MEDLINE | ID: mdl-28970523

Studies in recent years have established that the principal effects in cardiac cell therapy are associated with paracrine/autocrine factors. We combined several complementary techniques to define human cardiac progenitor cell (CPC) secretome constituted by 914 proteins/genes; 51% of these are associated with the exosomal compartment. To define the set of proteins specifically or highly differentially secreted by CPC, we compared human mesenchymal stem cells and dermal fibroblasts; the study defined a group of growth factors, cytokines and chemokines expressed at high to medium levels by CPC. Among them, IL-1, GROa (CXCL1), CXCL6 (GCP2) and IL-8 are examples whose expression was confirmed by most techniques used. ELISA showed that CXCL6 is significantly overexpressed in CPC conditioned medium (CM) (18- to 26-fold) and western blot confirmed expression of its receptors CXCR1 and CXCR2. Addition of anti-CXCL6 completely abolished migration in CPC-CM compared with anti-CXCR2, which promoted partial inhibition, and anti-CXCR1, which was inefficient. Anti-CXCL6 also significantly inhibited CPC CM angiogenic activity. In vivo evaluation also supported a relevant role for angiogenesis. Altogether, these results suggest a notable angiogenic potential in CPC-CM and identify CXCL6 as an important paracrine factor for CPC that signals mainly through CXCR2.


Chemokine CXCL6/genetics , Myocardium/metabolism , Neovascularization, Physiologic/genetics , Paracrine Communication/genetics , Proteome/genetics , Receptors, Interleukin-8B/metabolism , Stem Cells/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Cell Movement , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL6/antagonists & inhibitors , Chemokine CXCL6/metabolism , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myocardium/cytology , Proteome/metabolism , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/genetics , Signal Transduction , Stem Cells/cytology , Stem Cells/drug effects
16.
DNA Repair (Amst) ; 54: 40-45, 2017 06.
Article En | MEDLINE | ID: mdl-28460268

Non-homologous end joining (NHEJ) is the main mechanism for double strand break (DSB) DNA repair. The error-prone DNA polymerase mu (Polµ) is involved in immunoglobulin variable region rearrangement and in general, NHEJ in non-lymphoid cells. Deletion of NHEJ factors in P53-/- mice, which are highly prone to development of T cell lymphoma, generally increases cancer incidence and shifts the tumor spectrum towards aggressive pro-B lymphoma. In contrast, Polµ deletion increased sarcoma incidence, proportionally reducing pro-B lymphoma development on the P53-deficient background. Array comparative genomic hybridization (aCGH) analyses showed DNA copy number alterations in both P53-/- and Polµ-/-P53-/- lymphomas. Our results also indicate that the increase in sarcoma incidence in Polµ-/-P53-/- mice could be associated with Cdk4 and Kub3 amplification and overexpression. These results identify a role for Polµ in the prevention of sarcomagenesis on a murine P53-deficient background, in contrast to most other NHEJ factors.


Carcinogenesis , DNA End-Joining Repair , DNA-Directed DNA Polymerase/genetics , Sarcoma/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Carrier Proteins/genetics , Cyclin-Dependent Kinase 4/genetics , DNA/metabolism , DNA Copy Number Variations , Gene Amplification , Gene Deletion , Genomic Instability , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Knockout , Sarcoma/genetics , Sarcoma/pathology , Up-Regulation
17.
Circ Res ; 121(1): 71-80, 2017 Jun 23.
Article En | MEDLINE | ID: mdl-28533209

RATIONALE: Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. OBJECTIVE: In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. METHODS AND RESULTS: With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. CONCLUSIONS: This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398.


Coronary Vessels , Myocardial Infarction/therapy , Myocytes, Cardiac/transplantation , Stem Cell Transplantation/methods , Ventricular Dysfunction, Left/therapy , Coronary Vessels/physiology , Double-Blind Method , Feasibility Studies , Follow-Up Studies , Humans , Infusions, Intra-Arterial/methods , Myocardial Infarction/diagnosis , Transplantation, Homologous/methods , Treatment Outcome , Ventricular Dysfunction, Left/diagnosis
18.
J Tissue Eng Regen Med ; 11(3): 787-799, 2017 03.
Article En | MEDLINE | ID: mdl-25492026

miRNA-1 (miR-1) and miRNA-133a (miR-133a) are muscle-specific miRNAs that play an important role in heart development and physiopathology. Although both miRNAs have been broadly studied during cardiogenesis, the mechanisms by which miR-1 and miR-133a could influence linage commitment in pluripotent stem cells remain poorly characterized. In this study we analysed the regulation of miR-1 and miR-133a expression during pluripotent stem cell differentiation [P19.CL6 cells; embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and investigated their role in DMSO and embryoid body (EB)-mediated mesodermal and cardiac differentiation by gain- and loss-of-function studies, as well as in vivo, by the induction of teratomas. Gene expression analysis revealed that miR-1 and miR-133a are upregulated during cardiac differentiation of P19.CL6 cells, and also during ESC and iPSC EB differentiation. Forced overexpression of both miRNAs promoted mesodermal commitment and a concomitant decrease in the expression of neural differentiation markers. Moreover, overexpression of miR-1 enhanced the cardiac differentiation of P19.CL6, while miR-133a reduced it with respect to control cells. Teratoma formation experiments with P19.CL6 cells confirmed the influence of miR-1 and miR-133a during in vivo differentiation. Finally, inhibition of both miRNAs during P19.CL6 cardiac differentiation had opposite results to their overexpression. In conclusion, gene regulation involving miR-1 and miR-133a controls the mesodermal and cardiac fate of pluripotent stem cells. Copyright © 2014 John Wiley & Sons, Ltd.


Cell Differentiation/genetics , Cell Lineage/genetics , MicroRNAs/metabolism , Myocardium/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Gene Expression Regulation , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mesoderm/cytology , Mice, SCID , MicroRNAs/genetics , Models, Biological , Neurons/cytology , Neurons/metabolism
19.
Stem Cell Reports ; 7(3): 411-424, 2016 09 13.
Article En | MEDLINE | ID: mdl-27594590

The dermal Panniculus carnosus (PC) muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells) remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5(+), Pax3/Pax7(+) cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC myofibers in the absence of injury, we also studied the contribution of bone marrow-derived cells to the PC satellite cell compartment, demonstrating that cells of donor origin are capable of repopulating the PC muscle stem cell niche after irradiation and bone marrow transplantation but may not fully acquire the relevant myogenic commitment.


Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Biomarkers , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Cell Proliferation , Gene Expression Regulation, Developmental , Mice , Mice, Transgenic , Muscle Development , Muscle, Skeletal/physiology , PAX3 Transcription Factor/genetics , PAX7 Transcription Factor/genetics , Phenotype , Regeneration , Satellite Cells, Skeletal Muscle/transplantation
...