Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1862(6): 1505-1515, 2018 06.
Article in English | MEDLINE | ID: mdl-29526507

ABSTRACT

BACKGROUND: Impairment in mitochondrial biogenesis and function plays a key role in depression and anxiety, both of which being associated with changes in fatty acid and phospholipid metabolism. The antidepressant effects of (R,S)-ketamine have been linked to its conversion into (2S,6S;2R,6R)-hydroxynorketamine (HNK); however, the connection between structure and stereochemistry of ketamine and HNK in the mitochondrial homeostatic response has not yet been fully elucidated at a metabolic level. METHODS: We used a multi-platform, non-targeted metabolomics approach to study the change in mitochondrial metabolome of PC-12 cells treated with ketamine and HNK enantiomers. The identified metabolites were grouped into pathways in order to assess global responses. RESULTS: Treatment with (2R,6R)-HNK elicited the significant change in 49 metabolites and associated pathways implicated in fundamental mitochondrial functions such as TCA cycle, branched-chain amino acid biosynthetic pathway, glycoxylate metabolic pathway, and fatty acid ß-oxidation. The affected metabolites included glycerate, citrate, leucine, N,N-dimethylglycine, 3-hexenedioic acid, and carnitine and attenuated signals associated with 9 fatty acids and elaidic acid. Important metabolites involved in the purine and pyrimidine pathways were also affected by (2R-6R)-HNK. This global metabolic profile was not as strongly impacted by treatment with (2S,6S)-HNK, (R)- and (S)-ketamine and in some instances opposite effects were observed. CONCLUSIONS: The present data provide an overall view of the metabolic changes in mitochondrial function produced by (2R,6R)-HNK and related ketamine compounds and offer an insight into the source of the observed variance in antidepressant response elicited by the compounds.


Subject(s)
Ketamine/analogs & derivatives , Ketamine/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolome , Metabolomics/methods , Mitochondria/metabolism , Animals , Mitochondria/drug effects , PC12 Cells , Rats , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL