Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 964259, 2022.
Article in English | MEDLINE | ID: mdl-36032704

ABSTRACT

Cells mechanical behaviour in physiological environments is mediated by interactions with the extracellular matrix (ECM). In particular, cells can adapt their shape according to the availability of ECM proteins, e.g., fibronectin (FN). Several in vitro experiments usually simulate the ECM by functionalizing the surfaces on which cells grow with FN. However, the mechanisms underlying cell spreading on non-uniformly FN-coated two-dimensional substrates are not clarified yet. In this work, we studied cell spreading on variously functionalized substrates: FN was either uniformly distributed or selectively patterned on flat surfaces, to show that A549, BRL, B16 and NIH 3T3 cell lines are able to sense the overall FN binding sites independently of their spatial arrangement. Instead, only the total amount of available FN influences cells spreading area, which positively correlates to the FN density. Immunocytochemical analysis showed that ß1 integrin subunits are mainly responsible for this behaviour, as further confirmed by spreading experiments with ß1-deficient cells. In the latter case, indeed, cells areas do not show a dependency on the amount of available FN on the substrates. Therefore, we envision for ß1 a predominant role in cells for sensing the number of ECM ligands with respect to other focal adhesion proteins.

2.
Adv Healthc Mater ; 11(18): e2200718, 2022 09.
Article in English | MEDLINE | ID: mdl-35799451

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are crucial for disease modeling, drug discovery, and personalized medicine. Animal-derived materials hinderapplications of hiPSCs in medical fields. Thus, novel and well-defined substrate coatings capable of maintaining hiPSC pluripotency are important for advancing biomedical applications of hiPSCs. Here a miniaturized droplet microarray (DMA) platform to investigate 11 well-defined proteins, their 55 binary and 165 ternary combinations for their ability to maintainpluripotency of hiPSCs when applied as a surface coating, is used. Using this screening approach, ten protein group coatings are identified, which promote significantly higher NANOG expression of hiPSCs in comparison with Matrigel coating. With two of the identified coatings, long-term pluripotency maintenance of hiPSCs and subsequent differentiation into three germ layers are achieved. Compared with conventional high-throughput screening (HTS) in 96-well plates, the DMA platform uses only 83 µL of protein solution (0.83 µg total protein) and only ≈2.8 × 105 cells, decreasing the amount of proteins and cells ≈860 and 25-fold, respectively. The identified proteins will be essential for research and applications using hiPSCs, while the DMA platform demonstrates great potential for miniaturized HTS of scarce cells or expensive materials such as recombinant proteins.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Humans , Microarray Analysis , Recombinant Proteins/metabolism
3.
Sci Rep ; 11(1): 9269, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927254

ABSTRACT

Mechanotransduction via yes-associated protein (YAP) is a central mechanism for decision-making in mouse embryonic stem cells (mESCs). Nuclear localization of YAP is tightly connected to pluripotency and increases the cell division rate (CDR). How the geometry of the extracellular environment influences mechanotransduction, thereby YAP localization, and decision-making of single isolated mESCs is largely unknown. To investigate this relation, we produced well-defined 2D and 2.5D microenvironments and monitored CDR and subcellular YAP localization in single mESCs hence excluding cell-cell interactions. By systematically varying size and shape of the 2D and 2.5D substrates we observed that the geometry of the growth environment affects the CDR. Whereas CDR increases with increasing adhesive area in 2D, CDR is highest in small 2.5D micro-wells. Here, mESCs attach to all four walls and exhibit a cross-shaped cell and nuclear morphology. This observation indicates that changes in cell shape are linked to a high CDR. Inhibition of actomyosin activity abrogate these effects. Correspondingly, nuclear YAP localization decreases in inhibitor treated cells, suggesting a relation between cell shape, intracellular forces, and cell division rate. The simplicity of our system guarantees high standardization and reproducibility for monitoring stem cell reactions and allows addressing a variety of fundamental biological questions on a single cell level.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , Mouse Embryonic Stem Cells/metabolism , Subcellular Fractions/metabolism , Actin Cytoskeleton/metabolism , Animals , Cell Division , Environment , Mechanotransduction, Cellular , Mice , Mouse Embryonic Stem Cells/cytology , YAP-Signaling Proteins
4.
Cancers (Basel) ; 12(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322769

ABSTRACT

Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the cellular level constitute the driver of the disease and may evolve during therapy. This genetic and hierarchical complexity results in a pronounced phenotypic variability, which is observed among AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis and during the course of the disease. Here, we review the current knowledge on the heterogeneous landscape of AML surface markers with particular focus on those identifying LSC, and discuss why identification and targeting of this important cellular subpopulation in AML remains challenging.

5.
Acta Biomater ; 111: 254-266, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32434077

ABSTRACT

Multiple particle tracking (MPT) microrheology was employed for monitoring the development of extracellular matrix (ECM) mechanical properties in the direct microenvironment of living cells. A customized setup enabled us to overcome current limitations: (i) Continuous measurements were enabled using a cell culture chamber, with this, matrix remodeling by fibroblasts in the heterogeneous environment of macroporous scaffolds was monitored continuously. (ii) Employing tracer laden porous scaffolds for seeding human mesenchymal stem cells (hMSCs), we followed conventional differentiation protocols. Thus, we were, for the first time able to study the massive alterations in ECM elasticity during hMSC differentiation. (iii) MPT measurements in 2D cell cultures were enabled using a long distance objective. Exemplarily, local mechanical properties of the ECM in human umbilical vein endothelial cell (HUVEC) cultures, that naturally form 2D layers, were investigated scaffold-free. Using our advanced setup, we measured local, apparent elastic moduli G0,app in a range between 0.08 and 60 Pa. For fibroblasts grown in collagen-based scaffolds, a continuous decrease of local matrix elasticity resulted during the first 10 hours after seeding. The osteogenic differentiation of hMSC cells cultivated in similar scaffolds, led to an increase of G0,app by 100 %, whereas after adipogenic differentiation it was reduced by 80 %. The local elasticity of ECM that was newly secreted by HUVECs increased significantly upon addition of protease inhibitor and in high glucose conditions even a twofold increase in G0,app was observed. The combination of these advanced methods opens up new avenues for a broad range of investigations regarding cell-matrix interactions and the propagation of ECM mechanical properties in complex biological systems. STATEMENT OF SIGNIFICANCE: Cells sense the elasticity of their environment on a micrometer length scale. For studying the local elasticity of extracellular matrix (ECM) in the direct environment of living cells, we employed an advanced multipleparticle tracking microrheology setup. MPT is based on monitoring the Brownian motion oftracer particles, which is restricted by the surrounding network. Network elasticity can thusbe quantified. Overcoming current limitations, we realized continuous investigations of ECM elasticityduring fibroblast growth. Furthermore, MPT measurements of stem cell ECM showed ECMstiffening during osteogenic differentiation and softening during adipogenic differentiation.Finally, we characterized small amounts of delicate ECM newly secreted in scaffold-freecultures of endothelial cells, that naturally form 2D layers.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation , Cellular Microenvironment , Extracellular Matrix , Humans , Tissue Scaffolds
6.
Biomaterials ; 227: 119551, 2020 01.
Article in English | MEDLINE | ID: mdl-31670034

ABSTRACT

Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) represent the best cell source for cardiac regenerative purposes but retain an immature phenotype after differentiation with significant limitations compared to adult cardiomyocytes. Apart from an incomplete cardiomyocyte-specific structure and microarchitecture, cells show at the level of Ca2+ signaling only slow Ca2+ release and reuptake properties. Here, we investigated the effect of restructuring single iPSC-CMs in specially designed 3D-micro-scaffolds on cell morphology and Ca2+ handling. Using direct laser writing, rectangular-shaped scaffolds were produced and single iPSC-CMs were seeded into these forms. Structural analyses revealed strong sarcolemmal remodeling processes and myofilament reorientation in 3D-shaped cells leading to enhanced clustered expression of L-type Ca2+ channels and ryanodine receptors and consequently, to faster Ca2+ transient kinetics. Spontaneous beating activity was enhanced and Ca2+ handling was more robust compared to non-patterned cells. Overall, our data demonstrate for the first time significant improvement of Ca2+ signaling properties in reshaped iPSC-CMs indicative of functional maturation by structural remodeling.


Subject(s)
Induced Pluripotent Stem Cells , Adult , Cell Differentiation , Humans , Myocytes, Cardiac , Phenotype
7.
Adv Mater ; 31(26): e1808110, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30793374

ABSTRACT

Mimicking the properties of the extracellular matrix is crucial for developing in vitro models of the physiological microenvironment of living cells. Among other techniques, 3D direct laser writing (DLW) has emerged as a promising technology for realizing tailored 3D scaffolds for cell biology studies. Here, results based on DLW addressing basic biological issues, e.g., cell-force measurements and selective 3D cell spreading on functionalized structures are reviewed. Continuous future progress in DLW materials engineering and innovative approaches for scaffold fabrication will enable further applications of DLW in applied biomedical research and tissue engineering.


Subject(s)
Extracellular Matrix/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Cell Biology , Cell Culture Techniques , Eukaryotic Cells/metabolism , Humans , Mechanical Phenomena , Polymers/chemistry , Single-Cell Analysis/methods , Tissue Engineering/methods
8.
PLoS One ; 13(12): e0207397, 2018.
Article in English | MEDLINE | ID: mdl-30566463

ABSTRACT

As mechanical properties of cell culture substrates matter, methods for mechanical characterization of scaffolds on a relevant length scale are required. We used multiple particle tracking microrheology to close the gap between elasticity determined from bulk measurements and elastic properties sensed by cells. Structure and elasticity of macroporous, three-dimensional cryogel scaffolds from mixtures of hyaluronic acid (HA) and collagen (Coll) were characterized. Both one-component gels formed homogeneous networks, whereas hybrid gels were heterogeneous in terms of elasticity. Most strikingly, local elastic moduli were significantly lower than bulk moduli presumably due to non-equilibrium chain conformations between crosslinks. This was more pronounced in Coll and hybrid gels than in pure HA gels. Local elastic moduli were similar for all gels, irrespective of their different swelling ratio and bulk moduli. Fibroblast cell culture proved the biocompatibility of all investigated compositions. Coll containing gels enabled cell migration, adhesion and proliferation inside the gels.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Collagen/chemistry , Elasticity , Hyaluronic Acid/chemistry , Tissue Scaffolds/chemistry , Biomechanical Phenomena , Cell Proliferation/drug effects , Cell Survival/drug effects , Feasibility Studies , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Kinetics , Tissue Engineering , Viscosity
9.
Adv Mater ; 29(5)2017 Feb.
Article in English | MEDLINE | ID: mdl-27882610

ABSTRACT

The combination of three different photoresists into a single direct laser written 3D microscaffold permits functionalization with two bioactive full-length proteins. The cell-instructive microscaffolds consist of a passivating framework equipped with light activatable constituents featuring distinct protein-binding properties. This allows directed cell attachment of epithelial or fibroblast cells in 3D.


Subject(s)
Cell Adhesion , Fibroblasts , Proteins , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...