Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38009521

ABSTRACT

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Subject(s)
Melanoma , Humans , Mice , Animals , Melanoma/pathology , Endothelial Cells/metabolism , CD8-Positive T-Lymphocytes , NF-kappa B/metabolism , Autophagy , Immunotherapy , Tumor Microenvironment
2.
Autophagy ; 19(9): 2585-2589, 2023 09.
Article in English | MEDLINE | ID: mdl-37014272

ABSTRACT

The (macro)autophagy field is facing a paradigm shift after the recent discovery that cytosolic cargoes can still be selectively targeted to phagophores (the precursors to autophagosomes) even in the absence of LC3 or other Atg8-protein family members. Several in vitro studies have indeed reported on the existence of an unconventional selective autophagic pathway that involves the in-situ formation of an autophagosome around the cargo through the direct selective autophagy receptor-mediated recruitment of RB1CC1/FIP200, thereby bypassing the requirement of LC3. In an article recently published in Science, we demonstrate the physiological importance of this unconventional autophagic pathway in the context of TNF (tumor necrosis factor) signaling. We show that it promotes the degradation of the cytotoxic TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex II that assembles upon TNF sensing and thereby protects mice from TNFRSF1A-driven embryonic lethality and skin inflammation.Abbreviations: ATG: autophagy related; CASP: caspase; FIR: RB1CC1/FIP200-interacting region; LIR: LC3-interacting region; M1: linear; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase; TNF: tumor necrosis factor; TNFRSF1A: TNF receptor superfamily member 1A.


Subject(s)
Autophagosomes , Autophagy , Mice , Animals , Autophagy/physiology , Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/metabolism , Tumor Necrosis Factors/metabolism , Receptors, Tumor Necrosis Factor/metabolism
3.
Mol Metab ; 69: 101681, 2023 03.
Article in English | MEDLINE | ID: mdl-36707047

ABSTRACT

OBJECTIVES: Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing ß-cells. Inflammation is detrimental to ß-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of ß-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO). METHODS: The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, ß-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis. RESULTS: We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and ß-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human ß-cells. CONCLUSION: Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of ß-cells to proliferate and self-renewal.


Subject(s)
Diabetes Mellitus, Type 1 , Protein Kinases , Mice , Animals , Humans , Protein Kinases/metabolism , Inflammation/metabolism , Serine , Obesity , Receptor-Interacting Protein Serine-Threonine Kinases
4.
Cell Death Dis ; 7(11): e2462, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27831558

ABSTRACT

Cell death of hepatocytes is a prominent characteristic in the pathogenesis of liver disease, while hepatolysis is a starting point of inflammation in hepatitis and loss of hepatic function. However, the precise molecular mechanisms of hepatocyte cell death, the role of the cytokines of hepatic microenvironment and the involvement of intracellular kinases, remain unclear. Tumor necrosis factor alpha (TNF-α) is a key cytokine involved in cell death or survival pathways and the role of RIPK1 has been associated to the TNF-α-dependent signaling pathway. We took advantage of two different deficient mouse lines, the RIPK1 kinase dead knock-in mice (Ripk1K45A) and the conditional knockout mice lacking RIPK1 only in liver parenchymal cells (Ripk1LPC-KO), to characterize the role of RIPK1 and TNF-α in hepatitis induced by concanavalin A (ConA). Our results show that RIPK1 is dispensable for liver homeostasis under steady-state conditions but in contrast, RIPK1 kinase activity contributes to caspase-independent cell death induction following ConA injection and RIPK1 also serves as a scaffold, protecting hepatocytes from massive apoptotic cell death in this model. In the Ripk1LPC-KO mice challenged with ConA, TNF-α triggers apoptosis, responsible for the observed severe hepatitis. Mechanism potentially involves both TNF-independent canonical NF-κB activation, as well as TNF-dependent, but canonical NF-κB-independent mechanisms. In conclusion, our results suggest that RIPK1 kinase activity is a pertinent therapeutic target to protect liver against excessive cell death in liver diseases.


Subject(s)
Hepatitis/pathology , Liver/pathology , Protective Agents/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/adverse effects , Animals , Apoptosis , Cells, Cultured , Concanavalin A , Hepatitis/complications , Hepatocytes/metabolism , Hepatocytes/pathology , Homeostasis , Inflammation/complications , Inflammation/pathology , Mice, Inbred C57BL , Models, Biological , TNF Receptor-Associated Factor 2/metabolism
5.
Mol Cell Oncol ; 2(4): e975093, 2015.
Article in English | MEDLINE | ID: mdl-27308513

ABSTRACT

Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research.

SELECTION OF CITATIONS
SEARCH DETAIL