Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1169-1177, 2023 May.
Article in English | MEDLINE | ID: mdl-37236932

ABSTRACT

We analyzed the impacts of thinning intensity on the natural regeneration of Larix principis-rupprechtii in Shanxi Pangquangou Nature Reserve, with an experiment of five thinning intensities (5%, 25%, 45%, 65% and 85%). We constructed a structural equation model of thinning intensity-understory habitat-natural regeneration by using correlation analysis. The results showed that the regeneration index of moderate thinning (45%) and intensive thinning (85%) stand land was significantly higher than that of other thinning intensities. The constructed structural equation model had good adaptability. The effects of thinning intensity on each factor were as follows: soil alkali-hydrolyzable (-0.564) > regeneration index (0.548) > soil bulk density (-0.462) > average height of seed tree (-0.348) > herb coverage (-0.343) > soil organic matter (0.173) > undecomposed litter layer thickness (-0.146) > total soil nitrogen (0.110). Thinning intensity had a positive impact on the regeneration index, which was mainly through adjusting height of the seed tree, accelerating litter decomposition, improving soil physical and chemical properties, and thus indirectly promoting the natural regeneration of L. principis-rupprechtii. Tending thinning could effectively improve the survival environment of regeneration seedlings. From the perspective of natural regeneration of L. principis-rupprechtii, moderate thinning (45%) and intensive thinning (85%) were more reasonable in the follow-up forest management.


Subject(s)
Larix , Soil , Ecosystem , Forests , Trees , China
2.
Ying Yong Sheng Tai Xue Bao ; 22(5): 1225-32, 2011 May.
Article in Chinese | MEDLINE | ID: mdl-21812299

ABSTRACT

Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.


Subject(s)
Agriculture/methods , Biomass , Crops, Agricultural/growth & development , Fruit/growth & development , China , Malus/growth & development , Glycine max/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL