Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Brain Sci ; 13(10)2023 Oct 10.
Article En | MEDLINE | ID: mdl-37891805

Over the past 20 years, several eye-tracking technologies have been developed. This article aims to present a new type of eye tracker capable of producing detailed information on eye and head movements using an array of magnetoresistive detectors fixed on the patient's head and a small magnet inserted into a contact lens, adapted to the curvature of the cornea of the subject. The software used for data analysis can combine or compare eye and head movements and can represent them as 2D or 3D images. Preliminary data involve an initial patient who was asked to perform several tasks to establish the accuracy, reliability, and tolerance of the magnetic eye tracker and software. The tasks included assessment of saccadic eye movements and pursuit, "drawing" alphabetic shapes or letters, and reading. Finally, a Head Impulse Test (HIT) was performed to estimate the VOR gain, comparing the standard deviation established via vHIT with that established via this magnetic eye tracker (mHIT). This prototypical device is minimally invasive, lightweight, relatively cheap, and tolerable, with a high degree of reliability and precision. All these characteristics could lead to the future use of the magnetic eye tracker in neurological and otoneurological fields.

2.
Sci Rep ; 13(1): 15304, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37723191

The application of a periodic nonresonant drive to a system allows the Floquet engineering of effective fields described by a broad class of quantum simulated Hamiltonians. The Floquet evolution is based on two different elements. The first one is a time-independent or stroboscopic evolution with an effective Hamiltonian corresponding to the quantum simulation target. The second element is the time evolution at the frequencies of the nonresonant driving and of its harmonics, denoted as micromotion. We examine experimentally and theoretically the harmonic dual-dressing Floquet engineering of a cold atomic two-level sample. Our focus is the dressing operation with small bare energies and large Rabi frequencies, where frequencies and amplitudes of the stroboscopic/micromotion time evolutions are comparable. At the kHz range of our dressed atom oscillations, we probe directly both the stroboscopic and micromotion components of the qubit global time evolution. We develop ad-hoc monitoring tools of the Floquet space evolution. The direct record of the time evolution following a pulsed excitation demonstrates the interplay between the two components of the spin precession in the Floquet space. From the resonant pumping of the dressed system at its evolution frequencies, Floquet eigenenergy spectra up to the fifth order harmonic of the dressing frequency are precisely measured as function of dressing parameters. Dirac points of the Floquet eigenenergies are identified and, correspondingly, a jump in the dynamical phase shift is measured. The stroboscopic Hamiltonian eigenfrequencies are measured also from the probe of the micromotion sidebands.These monitoring tools are appropriate for quantum simulation/computation investigations. Our results evidence that the stroboscopic phase shift of the qubit wavefunction contains an additional information that opens new simulation directions.

3.
IEEE Trans Biomed Eng ; 70(12): 3373-3380, 2023 Dec.
Article En | MEDLINE | ID: mdl-37318963

A wireless, wearable magnetic eye tracker is described and characterized. The proposed instrumentation enables simultaneous evaluation of eye and head angular displacements. Such a system can be used to determine the absolute gaze direction as well as to analyze spontaneous eye re-orientation in response to stimuli consisting in head rotations. The latter feature has implications to analyze the vestibulo-ocular reflex and constitutes an interesting opportunity to develop medical (oto-neurological) diagnostics. Details of data analysis are reported together with some results obtained in-vivo or with simple mechanical simulators that enable measurements under controlled conditions.


Eye Movements , Wearable Electronic Devices , Reflex, Vestibulo-Ocular/physiology , Magnetics , Magnetic Phenomena
4.
Rev Sci Instrum ; 93(3): 035006, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-35365022

We present a set of results obtained with an innovative eye-tracker based on magnetic dipole localization by means of an array of magnetoresistive sensors. The system tracks both head and eye movements with a high rate (100-200 Sa/s) and in real time. A simple setup is arranged to simulate head and eye motions and to test the tracker performance under realistic conditions. Multimedia material is provided to substantiate and exemplify the results. A comparison with other available technologies for eye-tracking is drawn, discussing advantages (e.g., precision) and disadvantages (e.g., invasivity) of the diverse approaches, with the presented method standing out for low cost, robustness, and relatively low invasivity.


Eye Movements , Magnetics
5.
Opt Express ; 29(23): 37081-37090, 2021 Nov 08.
Article En | MEDLINE | ID: mdl-34808787

A recently introduced tuning-dressed scheme makes a Bell and Bloom magnetometer suited to detect weak variations of a radio-frequency (RF) magnetic field. We envisage the application of such innovative detection scheme as an alternative (or rather as a complement) to RF atomic magnetometers in electromagnetic-induction-imaging apparatuses.

6.
Phys Rev Lett ; 125(9): 093203, 2020 Aug 28.
Article En | MEDLINE | ID: mdl-32915625

The addition of a weak oscillating field modifying strongly dressed spins enhances and enriches the system quantum dynamics. Through low-order harmonic mixing, the bichromatic driving generates additional rectified static field acting on the spin system. The secondary field allows for a fine tuning of the atomic response and produces effects not accessible with a single dressing field, such as a spatial triaxial anisotropy of the spin coupling constants and acceleration of the spin dynamics. This tuning-dressed configuration introduces an extra handle for the system full engineering in quantum control applications. Tuning amplitude, harmonic content, spatial orientation, and phase relation are control parameters. A theoretical analysis, based on perturbative approach, is experimentally tested by applying a bichromatic radiofrequency field to an optically pumped Cs atomic vapour. The theoretical predictions are precisely confirmed by measurements performed with tuning frequencies up to the third harmonic.

7.
Rev Sci Instrum ; 91(4): 045119, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32357696

We present a system developed to premagnetize liquid samples in an ultra-low-field nuclear magnetic resonance experiment. Liquid samples of a few milliliters are exposed to a magnetic field of about 70 mT, which is abruptly switched off, to leave a transverse microtesla field, where nuclei start precessing. An accurate characterization of the transients and intermediate field level enables a reliable operation of the detection system, which is based on an optical magnetometer.

8.
Rev Sci Instrum ; 90(4): 046106, 2019 Apr.
Article En | MEDLINE | ID: mdl-31043044

Nuclear magnetic resonance detection in ultra-low-field regime enables the measurement of different components of a spurious remanence in the polymeric material constituting the sample container. A differential atomic magnetometer detects simultaneously the static field generated by the container and the time-dependent signal from the precessing nuclei. The nuclear precession responds with frequency shifts and decay rate variations to the container magnetization. Two components of the latter act independently on the atomic sensor and on the nuclear sample. A model of the measured signal allows a detailed interpretation on the basis of the interaction geometry.

9.
J Phys Chem Lett ; 8(24): 6176-6179, 2017 Dec 21.
Article En | MEDLINE | ID: mdl-29211488

We present NMR spectra of remote-magnetized deuterated water, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in a µT field, while pulsed techniques are applied-following the sample displacement-in a 100 µT field, to tip both D and H nuclei by controllable amounts. The broad-band nature of the detection system enables simultaneous detection of the two signals and accurate evaluation of their decay times. The outcomes of the experiment demonstrate the potential of ultra-low-field NMR spectroscopy in important applications where the correlation between proton and deuteron spin-spin relaxation rates as a function of external parameters contains significant information.

10.
Rev Sci Instrum ; 88(3): 035107, 2017 Mar.
Article En | MEDLINE | ID: mdl-28372446

A low cost, stable, programmable, unipolar current source is described. The circuit is designed in view of a modular arrangement, suitable for applications where several DC sources must be controlled at once. A hybrid switching/linear design helps in improving the stability and in reducing the power dissipation and cross-talking. Multiple units can be supplied by a single DC power supply, while allowing for a variety of maximal current values and compliance voltages at the outputs. The circuit is analogically controlled by a unipolar voltage, enabling current programmability and control through commercial digital-to-analogue conversion cards.

11.
J Magn Reson ; 263: 65-70, 2016 Feb.
Article En | MEDLINE | ID: mdl-26773528

We present experimental data and theoretical interpretation of NMR spectra of remotely magnetized samples, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in an ultra-low-field at an intermediate regime, where the J-coupling and the Zeeman energies have comparable values and produce rather complex line sets, which are satisfactorily interpreted.

12.
Rev Sci Instrum ; 85(3): 036104, 2014 Mar.
Article En | MEDLINE | ID: mdl-24689632

We describe a home-built pneumatic shuttle suitable for the fast displacement of samples in the vicinity of a highly sensitive atomic magnetometer. The samples are magnetized at 1 T using a Halbach assembly of magnets. The device enables the remote detection of free-induction-decay in ultra-low-field and zero-field nuclear magnetic resonance (NMR) experiments, in relaxometric measurements and in other applications involving the displacement of magnetized samples within time intervals as short as a few tens of milliseconds. Other possible applications of fast sample shuttling exist in radiological studies, where samples have to be irradiated and then analyzed in a cold environment.

...