Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 16(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39339940

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) kits are needed to finalise the transition from Sanger sequencing to NGS in HIV-1 genotypic drug resistance testing. MATERIALS AND METHODS: We compared a homemade NGS amplicon-based protocol and the AD4SEQ HIV-1 Solution v2 (AD4SEQ) NGS kit from Arrow Diagnostics for identifying resistance-associated mutations (RAMs) above the 5% threshold in 28 plasma samples where Sanger sequencing previously detected at least one RAM. RESULTS: The samples had a median 4.8 log [IQR 4.4-5.2] HIV-1 RNA copies/mL and were mostly subtype B (61%) and CRF02_AG (14%). Homemade NGS had a lower rate of samples with low-coverage regions (2/28) compared with AD4SEQ (13/28) (p < 0.001). Homemade NGS and AD4SEQ identified additional mutations with respect to Sanger sequencing in 13/28 and 9/28 samples, respectively. However, there were two and eight cases where mutations detected by Sanger sequencing were missed by homemade NGS and AD4SEQ-SmartVir, respectively. The discrepancies between NGS and Sanger sequencing resulted in a few minor differences in drug susceptibility interpretation, mostly for NNRTIs. CONCLUSIONS: Both the NGS systems identified additional mutations with respect to Sanger sequencing, and the agreement between them was fair. However, AD4SEQ should benefit from technical adjustments allowing higher sequence coverage.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , High-Throughput Nucleotide Sequencing , Mutation , HIV-1/genetics , HIV-1/drug effects , Drug Resistance, Viral/genetics , Humans , High-Throughput Nucleotide Sequencing/methods , HIV Infections/virology , HIV Infections/drug therapy , Male , Female , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Genotype , Adult , Middle Aged , RNA, Viral/genetics
2.
J Prev Med Hyg ; 65(1): E11-E16, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38706768

ABSTRACT

Introduction: The 2021/2022 influenza season was not characterised by a well-defined incidence peak. As reported by the Italian National Institute of Health, a high value of incidence of influenza cases was recorded in week 13, but it was still lower than in other influenza seasons. This abnormal circulation was probably due to relaxation of the COVID-19 pandemic restriction measures, such as social distancing, smart-working, home leaning and the use of masks, which greatly reduced the circulation of respiratory-transmitted viruses, including human respiratory syncytial virus (HRSV). The symptoms of SARS-CoV-2 and influenza are quite similar, sharing the human-to-human transmission route via respiratory droplets. Methods: The aim of this study was to estimate the rate of coinfection with influenza viruses and/or HRSV in SARS-CoV-2-positive subjects (N = 940) in a population of central Italy during the 2021/2022 season. Results: A total of 54 cases of coinfection were detected during the study period, 51 cases (5.4%) of SARS-CoV-2 and influenza virus and three cases (0.3%) of SARS-CoV-2 and HRSV coinfection. Conclusions: These results highlight the importance of continuous monitoring of the circulation of influenza virus and other respiratory viruses in the context of the COVID-19 pandemic.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , SARS-CoV-2 , Humans , Italy/epidemiology , COVID-19/epidemiology , Influenza, Human/epidemiology , Coinfection/epidemiology , Female , Adult , Male , Child , Middle Aged , Child, Preschool , Adolescent , Aged , Seasons , Infant , Young Adult , Incidence , Respiratory Syncytial Virus Infections/epidemiology
3.
Viruses ; 16(2)2024 01 23.
Article in English | MEDLINE | ID: mdl-38399944

ABSTRACT

Combination antiviral therapy may be helpful in the treatment of SARS-CoV-2 infection; however, no clinical trial data are available, and combined use of direct-acting antivirals (DAA) and monoclonal antibodies (mAb) has been reported only anecdotally. To assess the cooperative effects of dual drug combinations in vitro, we used a VERO E6 cell-based in vitro system with the ancestral B.1 or the highly divergent BQ.1.1 virus to test pairwise combinations of the licensed DAA, including nirmatrelvir (NRM), remdesivir (RDV) and the active metabolite of molnupiravir (EIDD-1931) as well the combination of RDV with four licensed mAbs (sotrovimab, bebtelovimab, cilgavimab, tixagevimab; tested only with the susceptible B.1 virus). According to SynergyFinder 3.0 summary and weighted scores, all the combinations had an additive effect. Within DAA/DAA combinations, paired scores with the B.1 and BQ.1.1 variants were comparable. In the post hoc analysis weighting synergy by concentrations, several cases of highly synergistic scores were detected at specific drug concentrations, both for DAA/DAA and for RDV/mAb combinations. This was supported by in vitro confirmation experiments showing a more than a linear shift of a drug-effective concentration (IC50) at increasing concentrations of the companion drug, although the effect was prominent with DAA/DAA combinations and minimal or null with RDV/mAb combinations. These results support the cooperative effects of dual drug combinations in vitro, which should be further investigated in animal models before introduction into the clinic.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Animals , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Drug Combinations
5.
Vaccines (Basel) ; 11(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37112782

ABSTRACT

Live virus neutralization is the gold standard to investigate immunity. This prospective observational study aimed to determine the magnitude of response against the original B.1 lineage and against the BA.5 lineage six months after the third BNT162b2 mRNA vaccine dose in patients with HIV infection on successful antiretroviral treatment and no previous SARS-CoV-2 infection. A total of 100 subjects (M/F 83/17, median age 54 years) were included in the analysis: 95 had plasma HIV RNA <40 copies/mL, the median CD4+ T cell count at the administration of the third dose was 580 cells/mm3, and the median nadir CD4+ T cell count was 258 cells/mm3. Neutralizing antibodies (NtAb) against B.1 were detectable in all the subjects, but those to BA.5 were only detected in 88 (p < 0.001). The median NtAb titer to B.1 was significantly higher than that to BA.5 (393 vs. 60, p < 0.0001), and there was a strong positive correlation between the paired measurements (p < 0.0001). Linear regression on a subset of 87 patients excluding outlier NtAb titers showed that 48% of the changes in NtAb titers to BA.5 are related to the changes in value titers to B.1. SARS-CoV-2 variants evolve rapidly, challenging the efficacy of vaccines, and data on comparative NtAb responses may help in tailoring intervals between vaccine doses and in predicting vaccine efficacy.

6.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: mdl-35891355

ABSTRACT

Newly emerging SARS-CoV-2 variants may escape monoclonal antibodies (mAbs) and antiviral drugs. By using live virus assays, we assessed the ex vivo inhibition of the B.1 wild-type (WT), delta and omicron BA.1 and BA.2 lineages by post-infusion sera from 40 individuals treated with bamlanivimab/etesevimab (BAM/ETE), casirivimab/imdevimab (CAS/IMD), and sotrovimab (SOT) as well as the activity of remdesivir, nirmatrelvir and molnupiravir. mAbs and drug activity were defined as the serum dilution (ID50) and drug concentration (IC50), respectively, showing 50% protection of virus-induced cytopathic effect. All pre-infusion sera were negative for SARS-CoV-2 neutralizing activity. BAM/ETE, CAS/IMD, and SOT showed activity against the WT (ID50 6295 (4355-8075) for BAM/ETE; 18,214 (16,248-21,365) for CAS/IMD; and 456 (265-592) for SOT) and the delta (14,780 (ID50 10,905-21,020) for BAM/ETE; 63,937 (47,211-79,971) for CAS/IMD; and 1103 (843-1334) for SOT). Notably, only SOT was active against BA.1 (ID50 200 (37-233)), whereas BA.2 was neutralized by CAS/IMD (ID50 174 (134-209) ID50) and SOT (ID50 20 (9-31) ID50), but not by BAM/ETE. No significant inter-variant IC50 differences were observed for molnupiravir (1.5 ± 0.1/1.5 ± 0.7/1.0 ± 0.5/0.8 ± 0.01 µM for WT/delta/BA.1/BA.2, respectively), nirmatrelvir (0.05 ± 0.02/0.06 ± 0.01/0.04 ± 0.02/0.04 ± 0.01 µM) or remdesivir (0.08 ± 0.04/0.11 ± 0.08/0.05 ± 0.04/0.08 ± 0.01 µM). Continued evolution of SARS-CoV-2 requires updating the mAbs arsenal, although antivirals have so far remained unaffected.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL