Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063006

ABSTRACT

Breast cancer is a major malignancy among women, characterized by a high mortality rate. The available literature evidence indicates that selenium, as a trace element, has chemopreventive properties against many types of cancer; as such, compounds containing it in their structure may potentially exhibit anticancer activity. Accordingly, we have undertaken a study to evaluate the effects of novel selenoesters (EDAG-1, -7, -8, -10) on MCF-7 and MDA-MB-231 breast cancer cells. Our analysis included investigations of cell proliferation and viability as well as cytometric determinations of apoptosis/autophagy induction, changes in mitochondrial membrane polarity (ΔΨm), caspase 3/7, 8, and 9 activities, and Bax, Bcl-2, p53, Akt, AMPK, and LC3A/B proteins. The obtained data revealed that the tested derivatives are highly cytotoxic and inhibit cell proliferation even at nanomolar doses (0.41-0.79 µM). Importantly, their strong proapoptotic properties (↑ caspase 3/7) are attributable to the effects on both the extrinsic (↑ caspase 8) and intrinsic (↓ ΔΨm and Bcl-2, ↑ Bax, p53, and caspase 9) pathways of apoptosis. Moreover, the tested compounds are autophagy activators (↓ Akt, ↑ autophagosomes and autolysosomes, AMPK, LC3A/B). In summary, the potent anticancer activity suggests that the tested compounds may be promising drug candidates for future breast cancer therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Autophagy , Cell Proliferation , Triple Negative Breast Neoplasms , Humans , Apoptosis/drug effects , Female , Cell Proliferation/drug effects , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Membrane Potential, Mitochondrial/drug effects , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Organoselenium Compounds/chemistry , Cell Survival/drug effects , Esters/chemistry , Esters/pharmacology , MCF-7 Cells
2.
J Enzyme Inhib Med Chem ; 39(1): 2343352, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38700244

ABSTRACT

In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Sulfonamides , Triazines , Humans , Triazines/pharmacology , Triazines/chemistry , Triazines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Molecular Structure , Cell Proliferation/drug effects , Apoptosis/drug effects , Tumor Cells, Cultured , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Female , Cell Line, Tumor , Spheroids, Cellular/drug effects
3.
Front Endocrinol (Lausanne) ; 15: 1332418, 2024.
Article in English | MEDLINE | ID: mdl-38390211

ABSTRACT

Background and aims: MiniMed 780G is the first Advanced Hybrid Closed Loop (AHCL) system in Poland, approved in the EU in 2020. To date, observations of glycemic control up to 12 months have been published. This study aimed to analyze glycemic control and anthropometric parameters in children and adolescents with type 1 diabetes (T1D) after two years of using the AHCL system. Materials and methods: We prospectively collected anthropometric data, pump, and continuous glucose records of fifty T1D children (9.9 ± 2.4 years, 24 (48%) boys, T1D for 3.9 ± 2.56 years) using an AHCL system. We compared the two-week AHCL records obtained after AHCL enrollment with data 6, 12, and 24 months after starting AHCL. Results: Time in range (70-180 mg/dl) and BMI z-score did not change during the 2 years of observation (p>0.05). The percentage of autocorrection in total daily insulin increased significantly (p<0.005). Conclusion: Glycemic control in the investigated group of children with T1D treated with the AHCL system for 2 years remained stable. Children in this group maintained weight and optimal metabolic control, most likely due to autocorrection boluses.


Subject(s)
Body Fluids , Diabetes Mellitus, Type 1 , Adolescent , Male , Child , Humans , Female , Diabetes Mellitus, Type 1/drug therapy , Glycemic Control , Prospective Studies , Anthropometry
4.
Bioorg Chem ; 143: 107076, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163424

ABSTRACT

Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antiparasitic Agents/pharmacology , Prospective Studies , Antineoplastic Agents/pharmacology , Structure-Activity Relationship
5.
Bioorg Chem ; 143: 106982, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995642

ABSTRACT

Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.


Subject(s)
Azides , Click Chemistry , Maleimides , Sulfhydryl Compounds , Azides/chemistry , Alkynes/chemistry , Cycloaddition Reaction , Copper/chemistry
6.
Cancers (Basel) ; 15(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958473

ABSTRACT

Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.

7.
Nutrients ; 15(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37836403

ABSTRACT

Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.


Subject(s)
Blueberry Plants , Vaccinium myrtillus , Anthocyanins/pharmacology , Functional Food , Fruit , Antioxidants/pharmacology , Plant Extracts/pharmacology
8.
Technol Health Care ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37781828

ABSTRACT

BACKGROUND: Given the steadily rising incidence of type 1 diabetes (T1D), particularly among the youngest preschool children, coupled with well-documented challenges of achieving and maintaining optimal metabolic control in this age group, there is a growing need for advanced technological devices. OBJECTIVE: To evaluate glycaemic control in children below the age of seven with type 1 diabetes (T1D) and assess the safety of the advanced hybrid closed loop (AHCL) system in comparison to the previous treatment method, a sensor-augmented pump with predictive low-glucose suspend (SAP-PLGS). METHOD: Data from 10 children (aged 2.60-6.98 years) with T1D who transitioned to the AHCL system from SAP-PLGS were analysed. SAP-PLGS records from two weeks prior to the initiation of AHCL were compared with records from the initial four weeks post-switch (excluding the training period). These data were examined at two 2-week intervals and compared with records from two weeks post six-month usage of the AHCL. RESULTS: A significant decrease in the average nighttime glucose concentration was observed compared to pre-AHCL values (p= 0.001, concordance W = 0.53). The Glucose Management Indicator (GMI) value significantly decreased from 6.88 ± 0.37% to 6.52 ± 0.32% (p= 0.018, rbc = 0.93) immediately following the device switch and stabilized at 6.50 ± 0.28% (p= 0.001, W = 0.53) and 6.55 ± 0.41% (p= 0.001, W = 0.53) at subsequent stages of the study. An improvement was also observed in mean glucose values for time spent < 54 mg/dl, while the proportion of time within this range was maintained, both during the day (p< 0.001, W = 0.58) and at night (p= 0.002, W = 0.83). CONCLUSION: The AHCL MiniMed 780GTM system improved glycaemic control in the studied group of children under seven years of age with T1D compared to previous SAP-PLGS therapy. It proved to be safe for delivering insulin in this age group.

9.
Cells ; 12(18)2023 09 19.
Article in English | MEDLINE | ID: mdl-37759535

ABSTRACT

Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.


Subject(s)
Endocytosis , Endocytosis/drug effects
10.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685842

ABSTRACT

Specific changes in mucin-type O-glycosylation are common for many cancers, including gastric ones. The most typical alterations include incomplete synthesis of glycan structures, enhanced expression of truncated O-glycans (Tn, T antigens and their sialylated forms), and overexpression of fucosylation. Such altered glycans influence many cellular activities promoting cancer development. Tiliroside is a glycosidic dietary flavonoid with pharmacological properties, including anti-cancer. In this study, we aim to assess the effect of the combined action of anti-MUC1 and tiliroside on some cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 40, 80, and 160 µM tiliroside, 5 µg/mL anti-MUC1, and flavonoid together with mAb. Real-Time PCR, ELISA, and Western blotting were applied to examine MUC1 expression, specific, tumor-associated antigens, enzymes taking part in their formation, Gal-3, Akt, and NF-κB. MUC1 expression was significantly reduced by mAb action. The combined action of anti-MUC1 and tiliroside was more effective in comparison with monotherapy in the case of C1GalT1, ST3GalT1, FUT4, Gal-3, NF-κB, Akt mRNAs, and Tn antigen, as well as sialyl T antigen expression. The results of our study indicate that applied combined therapy may be a promising anti-gastric cancer strategy.


Subject(s)
NF-kappa B , Stomach Neoplasms , Humans , Antibodies, Monoclonal/pharmacology , Flavonoids , Fucosyltransferases , Proto-Oncogene Proteins c-akt , Stomach Neoplasms/immunology , Stomach Neoplasms/therapy , Mucin-1/immunology
11.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240221

ABSTRACT

A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.


Subject(s)
Antineoplastic Agents , Cell Line, Tumor , Structure-Activity Relationship , Molecular Docking Simulation , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Molecular Structure , Ursolic Acid
12.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047765

ABSTRACT

Combining chemotherapy with immunotherapy still remains a regimen in anticancer therapy. Novel 4-thiazolidinone-bearing hybrid molecules possess well-documented anticancer activity, and together with anti-HER2 antibodies, may represent a promising strategy in treating patients with gastric cancer with confirmed human epidermal growth factor receptor 2 (HER2) expression. The aim of the study was to synthesize a new 4-thiazolidinone derivative (Les-4367) and investigate its molecular mechanism of action in combination with trastuzumab or pertuzumab in human AGS gastric cancer cells. AGS cell viability and antiproliferative potential were examined. The effect of the tested combinations as well as monotherapy on apoptosis and autophagy was also determined. Metalloproteinase-2 (MMP-2), intercellular adhesion molecule 1 (ICAM-1), pro-inflammatory and anti-inflammatory cytokine concentrations were also demonstrated by the ELISA technique. We proved that pertuzumab and trastuzumab were very effective in increasing the sensitivity of AGS gastric cancer cells to novel Les-4367. The molecular mechanism of action of the tested combination is connected with the induction of apoptosis. Additionally, the anticancer activity is not associated with the autophagy process. Decreased concentrations of pro-inflammatory cytokines, MMP-2 and ICAM-1-were observed. The novel combination of drugs based on anti-HER2 antibodies with Les-4367 is a promising strategy against AGS gastric cancer cells.


Subject(s)
Stomach Neoplasms , Thiazolidines , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 2 , Receptor, ErbB-2/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Trastuzumab/pharmacology , Thiazolidines/pharmacology
13.
Eur J Med Chem ; 252: 115304, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37001390

ABSTRACT

A series of 11-substituted 9-hydroxy-3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones 3.1-3.13 were synthesized via hetero-Diels-Alder reaction of 5-ene-4-thioxo-2-thiazolidinones and 5-hydroxy-1,4-naphthoquinone (juglone). The structure of newly synthesized compounds was established by means of spectral data and a single-crystal X-ray diffraction analysis. The synthesized compounds were tested on a panel of cell lines representing different types of cancer as well as normal and pseudonormal cells and peripheral human blood lymphocytes. Compound 3.10 was found to be the most active derivative, exhibiting a cytotoxic effect similar to doxorubicin's one (IC50 ranged from 0.6 to 5.98 µM), but less toxic to normal and pseudonormal cells. All synthesized compounds were able to interact with DNA, although their anticancer activity did not correlate with the potency of interaction with DNA. The status of p53 in colorectal cancer cells correlated with the activity of the synthesized derivatives 3.1, 3.7, and 3.10. Compound 3.10 did not have an acute toxic effect on the body of С57BL/6 mice, unlike the well-known anticancer drug doxorubicin, which was used as a positive control. The injection of 3.10 (20 mg/kg) to mice had no effect on the counts of leukocytes, erythrocytes, platelets and hemoglobin level in their blood, in contrast to doxorubicin, which caused anemia and leukopenia, indicating bio-tolerance of 3.10in vivo.


Subject(s)
Antineoplastic Agents , Naphthoquinones , Humans , Animals , Mice , Thiazoles/chemistry , Antineoplastic Agents/chemistry , Naphthoquinones/pharmacology , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Molecular Structure , Molecular Docking Simulation , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor
14.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769216

ABSTRACT

Undiagnosed and untreated non-alcoholic fatty liver disease (NAFLD) can lead to the development of many complications, such as cirrhosis, hepatocellular carcinoma, or cardiovascular diseases. Obese people are at increased risk of developing NAFLD. Due to the current lack of routine diagnostics, it is extremely important to look for new diagnostic methods and markers for this disease. The aim of this study was to assess the concentration of selected pro-inflammatory adipokines and cytokines in the unstimulated saliva of obese people with fatty liver disease in various stages (with or without slight fibrosis) and to analyze them for possible use as early markers of NAFLD diagnosis. The study involved 96 people who were divided into 5 groups based on the criterion of body mass index (BMI) and the degree of fatty liver (liver elastography). There were statistically significant differences between the groups in the concentrations of MMP-9 (matrix metalloproteinase 9), resistin, and IL-1ß (interleukin 1ß) in saliva. Statistically significant, positive correlations between hepatic steatosis and the concentration of MMP-2 (matrix metalloproteinase 2), resistin, and IL-1ß in saliva were also found. Statistically significant positive correlations were also found between the concentration of resistin in saliva and the concentration of ALT (alanine aminotransferase) and GGTP (gamma-glutamyl transpeptidase) in serum. MMP-2, IL-1ß, and resistin may be potential markers of NAFLD development, assessed in saliva. However, further research is needed because this is the first study to evaluate the concentrations of the selected pro-inflammatory parameters in the saliva of patients with NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Matrix Metalloproteinase 2 , Adipokines , Resistin , Pilot Projects , Saliva , Obesity/pathology , Liver/pathology , Cytokines
15.
Pharmaceutics ; 14(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365105

ABSTRACT

Nanomedicine is a potential provider of novel therapeutic and diagnostic routes of treatment. Considering the development of multidrug resistance in pathogenic bacteria and the commonness of cancer, novel approaches are being sought for the safe and efficient synthesis of new nanoparticles, which have multifaceted applications in medicine. Unfortunately, the chemical synthesis of nanoparticles raises justified environmental concerns. A significant problem in their widespread use is also the toxicity of compounds that maintain nanoparticle stability, which significantly limits their clinical use. An opportunity for their more extensive application is the utilization of plants, fungi, and bacteria for nanoparticle biosynthesis. Extracts from natural sources can reduce metal ions in nanoparticles and stabilize them with non-toxic extract components.

16.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361924

ABSTRACT

Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.


Subject(s)
Antineoplastic Agents , Drug Design , Thiazolidines/pharmacology , Thiazolidines/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Chemistry, Pharmaceutical
17.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234755

ABSTRACT

Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.


Subject(s)
Antineoplastic Agents , Leukemia , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzoic Acid/pharmacology , Cell Line, Tumor , Cell Proliferation , DNA/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esters/pharmacology , Humans , Molecular Structure , Pyridines/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology
18.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296570

ABSTRACT

Based on the results of previous work, we designed and synthesized 1,3,4-thiadiazole derivatives. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and a normal cell line (fibroblasts). The results showed that all compounds displayed weak anticancer activity towards two breast cancer lines: an estrogen-dependent cell line (MCF-7) and an estrogen-independent cell line (MDA-MB-231). The compound most active towards MCF-7 breast cancer cells was SCT-4, which decreased DNA biosynthesis to 70% ± 3 at 100 µM. The mechanism of the anticancer action of 1,3,4-thiadiazole was also investigated. We choose a set of the most investigated proteins, which are attractive anticancer targets. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds but the most likely mechanism of action for the new compounds is connected with the activity of caspase 8.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Thiadiazoles , Humans , Female , Drug Screening Assays, Antitumor , Caspase 8 , Structure-Activity Relationship , Molecular Structure , Cell Proliferation , Breast Neoplasms/drug therapy , Estrogens/pharmacology , DNA/therapeutic use , Cell Line, Tumor , Dose-Response Relationship, Drug
19.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232888

ABSTRACT

Scorzonera hispanica is an herbaceous perennial cultivated in Central and Southern Europe. This study aimed to qualitatively and quantitatively evaluate the composition of oil, extracts, and fractions (SH1-SH12) obtained from S. hispanica seeds. Furthermore, an evaluation of biological activities in breast cancer cell lines was also performed. GC-MS analysis revealed that the primary components of the seed oil (SH12) were fatty acids and ß-sitosterol. In the evaluation of extracts (SH1-SH3, SH8-SH10) and fractions (SH4-SH7, SH11) composition, the presence of apigenin, derivatives of p-coumaric and caffeic acids, was reported. In the biological assays, methanolic extract (SH1), diethyl ether (SH4), and chloroform (SH11) fractions exhibited cytotoxicity toward cells. The highest activity was observed for fatty acids- and 3,4-dimethoxycinnamate-rich SH11 (IC50: 399.18 µg/mL for MCF-7, 781.26 µg/mL for MDA-MB-231). SH11 was also observed to induce apoptosis in MCF-7 cells (52.4%). SH1, SH4, and SH11 attenuate signaling pathways and affect the expression of apoptosis-, autophagy-, and inflammation-related proteins. SH12 was non-toxic toward either cancer or normal cell lines in concentrations up to 1 mg/mL. The results suggest that S. hispanica seeds exhibit a wide range of potential uses as a source of oil and bioactive compounds for complementary therapy of breast cancer.


Subject(s)
Breast Neoplasms , Scorzonera , Apigenin , Breast Neoplasms/drug therapy , Caffeic Acids , Chloroform , Ether , Fatty Acids/pharmacology , Female , Gas Chromatography-Mass Spectrometry/methods , Humans , MCF-7 Cells , Plant Extracts/pharmacology , Plant Oils/pharmacology , Seeds
20.
Cancers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077839

ABSTRACT

Disturbing cancer statistics, especially for breast cancer, are becoming a rationale for the development of new anticancer therapies. For the past several years, studies have been proving a greater role of selenium in the chemoprevention of many cancers than previously considered; hence, a trend to develop compounds containing this element as potential agents with anticancer activity has been set for some time. Therefore, our study aimed to evaluate the anticancer activity of novel selenoesters (EDA-71, E-NS-4) in MCF-7 and MDA-MB-231 human breast cancer cells. The assays evaluating proliferation and cell viability, and flow cytometer analysis of apoptosis/autophagy induction, changes in mitochondrial membrane potential, disruption of cell cycle phases, and protein activity of mTOR, NF-κB, cyclin E1/A2, and caspases 3/7, 8, 9, 10 were performed. The obtained results indicate that the tested selenoesters are highly cytotoxic and exhibit antiproliferative activity at low micromolar doses (<5 µM) compared with cisplatin. The most active compound­EDA-71­highly induces apoptosis, which proceeds via both pathways, as evidenced by the activation of all tested caspases. Furthermore, we observed the occurrence of autophagy (↓ mTOR levels) and cell cycle arrest in the S or G2/M phase (↓ cyclin E1, ↑ cyclin A2).

SELECTION OF CITATIONS
SEARCH DETAIL