Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Infect Dis ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38843052

BACKGROUND: The immunological determinants of delayed viral clearance and intra-host viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied SARS-CoV-2-specific immune responses in relation to viral-clearance and evolution in immunocompromised individuals. METHODS: Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike IgG(3) titers, neutralization titers, and monoclonal antibody (mAb)-resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (RT-PCR negative ≤28 days) or late (RT-PCR- positive >28 days) viral-clearance. RESULTS: Of 30 patients included (median age 61.9 years [IQR 47.4-72.3], 50% females), 20 (66.7%) received mAb-therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral-clearance. Early viral-clearance patients and patients without resistance-associated mutations had significantly higher baseline IFN-γ release and early viral-clearance patients had a higher frequency of SARS-CoV-2-specific B-cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral-clearance. CONCLUSION: An early robust adaptive immune response is vital for efficient viral-clearance and associated with less emergence of mAb-resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.

2.
JAMA Netw Open ; 6(7): e2321985, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37410460

Importance: Pre-exposure prophylaxis with neutralizing SARS-CoV-2 monoclonal antibodies (mAbs PrEP) prevents infection and reduces hospitalizations and the duration thereof for COVID-19 and death among high-risk individuals. However, reduced effectiveness due to a changing SARS-CoV-2 viral landscape and high drug prices remain substantial implementation barriers. Objective: To assess the cost-effectiveness of mAbs PrEP as COVID-19 PrEP. Design, Setting, and Participants: For this economic evaluation, a decision analytic model was developed and parameterized with health care outcome and utilization data from individuals with high risk for COVID-19. The SARS-CoV-2 infection probability, mAbs PrEP effectiveness, and drug pricing were varied. All costs were collected from a third-party payer perspective. Data were analyzed from September 2021 to December 2022. Main Outcomes and Measures: Health care outcomes including new SARS-CoV-2 infections, hospitalization, and deaths. The cost per death averted and cost-effectiveness ratios using a threshold for prevention interventions of $22 000 or less per quality-adjusted life year (QALY) gained. Results: The clinical cohort consisted of 636 individuals with COVID-19 (mean [SD] age 63 [18] years; 341 [54%] male). Most individuals were at high risk for severe COVID-19, including 137 (21%) with a body mass index of 30 or higher, 60 (9.4%) with hematological malignant neoplasm, 108 (17%) post-transplantation, and 152 (23.9%) who used immunosuppressive medication before COVID-19. Within the context of a high (18%) SARS-CoV-2 infection probability and low (25%) effectiveness the model calculated a short-term reduction of 42% ward admissions, 31% intensive care unit (ICU) admissions, and 34% deaths. Cost-saving scenarios were obtained with drug prices of $275 and 75% or higher effectiveness. With a 100% effectiveness mAbs PrEP can reduce ward admissions by 70%, ICU admissions by 97%, and deaths by 92%. Drug prices, however, need to reduce to $550 for cost-effectiveness ratios less than $22 000 per QALY gained per death averted and to $2200 for ratios between $22 000 and $88 000. Conclusions and Relevance: In this study, use of mAbs PrEP for preventing SARS-CoV-2 infections was cost-saving at the beginning of an epidemic wave (high infection probability) with 75% or higher effectiveness and drug price of $275. These results are timely and relevant for decision-makers involved in mAbs PrEP implementation. When newer mAbs PrEP combinations become available, guidance on implementation should be formulated ensuring a fast rollout. Nevertheless, advocacy for mAbs PrEP use and critical discussion on drug prices are necessary to ensuring cost-effectiveness for different epidemic settings.


COVID-19 , HIV Infections , Pre-Exposure Prophylaxis , Humans , Male , Middle Aged , Female , SARS-CoV-2 , Cost-Benefit Analysis , HIV Infections/epidemiology , Pre-Exposure Prophylaxis/methods , COVID-19/prevention & control , Outcome Assessment, Health Care
3.
Curr Opin Crit Care ; 29(2): 123-129, 2023 04 01.
Article En | MEDLINE | ID: mdl-36762681

PURPOSE OF REVIEW: This review aims to provide an overview of the current knowledge about microbiota-targeted therapies in sepsis, and calls out - despite recent negative studies - not to halt our efforts of translating these tools into regular medical practice. RECENT FINDINGS: The intestinal microbiome has an important role in shaping our immune system, and microbiota-derived metabolites prime innate and adaptive inflammatory responses to infectious pathogens. Microbiota composition is severely disrupted during sepsis, which has been linked to increased risk of mortality and secondary infections. However, efforts of using these microbes as a tool for prognostic or therapeutic purposes have been unsuccessful so far, and recent trials studying the impact of probiotics in critical illness did not improve patient outcomes. Despite these negative results, researchers must continue their attempts of harnessing the microbiome to improve sepsis survival in patients with a high risk of clinical deterioration. Promising research avenues that could potentially benefit sepsis patients include the development of next-generation probiotics, use of the microbiome as a theranostic tool to direct therapy, and addressing the restoration of microbial communities following ICU discharge. SUMMARY: Although research focused on microbiome-mediated therapy in critically ill patients has not yielded the results that were anticipated, we should not abandon our efforts to translate promising preclinical findings into clinical practice.


Gastrointestinal Microbiome , Microbiota , Probiotics , Sepsis , Humans , Microbiota/physiology , Probiotics/therapeutic use , Gastrointestinal Microbiome/physiology , Critical Care/methods , Sepsis/therapy , Critical Illness/therapy
5.
Curr Opin Infect Dis ; 35(3): 196-204, 2022 06 01.
Article En | MEDLINE | ID: mdl-35665713

PURPOSE OF REVIEW: Melioidosis, caused by the soil-dwelling bacterium Burkholderia pseudomallei, is a tropical infection associated with high morbidity and mortality. This review summarizes current insights into melioidosis' endemicity, focusing on epidemiological transitions, zoonosis, and climate change. RECENT FINDINGS: Estimates of the global burden of melioidosis affirm the significance of hot-spots in Australia and Thailand. However, it also highlights the paucity of systematic data from South Asia, The Americas, and Africa. Globally, the growing incidence of diabetes, chronic renal and (alcoholic) liver diseases further increase the susceptibility of individuals to B. pseudomallei infection. Recent outbreaks in nonendemic regions have further exposed the hazard from the trade of animals and products as potential reservoirs for B. pseudomallei. Lastly, global warming will increase precipitation, severe weather events, soil salinity and anthrosol, all associated with the occurrence of B. pseudomallei. SUMMARY: Epidemiological transitions, zoonotic hazards, and climate change are all contributing to the emergence of novel melioidosis-endemic areas. The adoption of the One Health approach involving multidisciplinary collaboration is important in unraveling the real incidence of B. pseudomallei, as well as reducing the spread and associated mortality.


Burkholderia pseudomallei , Melioidosis , Animals , Climate Change , Humans , Melioidosis/epidemiology , Melioidosis/microbiology , Soil , Soil Microbiology , Zoonoses/epidemiology
6.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Article En | MEDLINE | ID: mdl-35616585

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


COVID-19 , Microbiota , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Lung/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Respiration, Artificial , Tumor Necrosis Factor-alpha
...