Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
FEBS J ; 291(5): 849-864, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814408

ABSTRACT

Monoamine oxidases (MAOs) are pivotal regulators of neurotransmitters in mammals, while microbial MAOs have been shown to be valuable biocatalysts for enantioselective synthesis of pharmaceutical compounds or precursors thereof. To extend the knowledge of how MAOs function at the molecular level and in order to provide more biocatalytic tools, we set out to identify and study a robust bacterial variant: a MAO from the thermophile Thermoanaerobacterales bacterium (MAOTb ). MAOTb is highly thermostable with melting temperatures above 73 °C and is well expressed in Escherichia coli. Substrate screening revealed that the oxidase is most efficient with n-alkylamines with n-heptylamine being the best substrate. Presteady-state kinetic analysis shows that reduced MAOTb rapidly reacts with molecular oxygen, confirming that it is a bona fide oxidase. The crystal structure of MAOTb was resolved at 1.5 Å and showed an exceptionally high similarity with the two human MAOs, MAO A and MAO B. The active site of MAOTb resembles mostly the architecture of human MAO A, including the cysteinyl protein-FAD linkage. Yet, the bacterial MAO lacks a C-terminal extension found in human MAOs, which explains why it is expressed and purified as a soluble protein, while the mammalian counterparts are anchored to the membrane through an α-helix. MAOTb also displays a slightly different active site access tunnel, which may explain the specificity toward long aliphatic amines. Being an easy-to-express, thermostable enzyme, for which a high-resolution structure was elucidated, this bacterial MAO may develop into a valuable biocatalyst for synthetic chemistry or biosensing.


Subject(s)
Bacteria , Monoamine Oxidase , Humans , Animals , Kinetics , Monoamine Oxidase/genetics , Biocatalysis , Amines , Escherichia coli/genetics , Mammals
2.
Acta Pharm Sin B ; 13(5): 2152-2175, 2023 May.
Article in English | MEDLINE | ID: mdl-37250172

ABSTRACT

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN 19, a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone 19 has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC50 = 1.06 ± 0.31 nmol/L) and hMAO-B (IC50 = 4.46 ± 0.18 µmol/L). The crystal structures of 19 with hBChE and hMAO-B provided the structural basis for potent binding, which was further studied by enzyme kinetics. Compound 19 acted as a free radical scavenger and biometal chelator, crossed the blood-brain barrier, was not cytotoxic, and showed neuroprotective properties in a 6-hydroxydopamine cell model of Parkinson's disease. In addition, in vivo studies showed the anti-amnesic effect of 19 in the scopolamine-induced mouse model of AD without adverse effects on motoric function and coordination. Importantly, chronic treatment of double transgenic APPswe-PS1δE9 mice with 19 reduced amyloid plaque load in the hippocampus and cortex of female mice, underscoring the disease-modifying effect of QN 19.

3.
Eur J Med Chem ; 255: 115352, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37178666

ABSTRACT

Following a hybridization strategy, a series of 5-substituted-1H-indazoles were designed and evaluated in vitro as inhibitors of human monoamine oxidase (hMAO) A and B. Among structural modifications, the bioisostere-based introduction of 1,2,4-oxadiazole ring returned the most potent and selective human MAO B inhibitor (compound 20, IC50 = 52 nM, SI > 192). The most promising inhibitors were studied in cell-based neuroprotection models of SH-SY5Y and astrocytes line against H2O2. Moreover, preliminary drug-like features (aqueous solubility at pH 7.4; hydrolytic stability at acidic and neutral pH) were assessed for selected 1,2,4-oxadiazoles and compared to amide analogues through RP-HPLC methods. Molecular docking simulations highlighted the crucial role of molecular flexibility in providing a better shape complementarity for compound 20 within MAO B enzymatic cleft than rigid analogue 18. Enzymatic kinetics analysis along with thermal stability curves (Tm shift = +2.9 °C) provided clues of a tight-binding mechanism for hMAO B inhibition by 20.


Subject(s)
Neuroblastoma , Neuroprotection , Humans , Molecular Docking Simulation , Indazoles/pharmacology , Indazoles/chemistry , Oxadiazoles/pharmacology , Hydrogen Peroxide , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
4.
Methods Mol Biol ; 2558: 23-34, 2023.
Article in English | MEDLINE | ID: mdl-36169853

ABSTRACT

MAO activity measurement is generally performed following different spectroscopy methods, in most cases using peroxidase as a coupled reaction catalyst. In the presence of horseradish peroxidase (HRP), the assay follows the oxidation of the typical MAO substrate (aromatic amines) which generates hydrogen peroxide as a secondary product. There are several chromogens and fluorogens that, in the presence of hydrogen peroxide, are converted by HRP to detectable products. In the present chapter we describe the spectrophotometric 4-aminoantipyrine assay as well as the fluorogenic assay with the Amplex® Red chemical probe. These methods are applied on MAO activity and Michaelis-Menten curve determinations as well as inhibitory activity experiments.


Subject(s)
Hydrogen Peroxide , Peroxidase , Amines , Ampyrone , Coloring Agents , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Monoamine Oxidase , Oxidation-Reduction
5.
Methods Mol Biol ; 2558: 35-43, 2023.
Article in English | MEDLINE | ID: mdl-36169854

ABSTRACT

MAO activity measurement can be monitored by direct peroxidase-free assays following different spectroscopy methods. Typically, these are assays that follow the conversion of different MAO substrates into its corresponding products monitored in either absorbance or fluorescence. Herein, we describe the assays for enzyme activity assessment with MAO B and particularly the MAO A substrate kynuramine, as well as the MAO B substrate benzylamine. Moreover, we also describe MAO activity determination using the tertiary amine substrate allyl amine 1-methyl-4-(1-methyl-1 H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP). These are very useful methods for the investigation of MAO inhibitory activity by molecules known to be HRP-interfering. In the present chapter we demonstrate the application of these methods in MAO activity and Michaelis-Menten curve determinations as well as inhibitory activity experiments.


Subject(s)
Kynuramine , Monoamine Oxidase , Amines , Benzylamines , Kinetics , Monoamine Oxidase/metabolism , Pyrrolidines
6.
Methods Mol Biol ; 2558: 115-122, 2023.
Article in English | MEDLINE | ID: mdl-36169859

ABSTRACT

The interest in monoamine oxidases A and B (MAO A and B) is due to their central role in regulating the balance of neurotransmitters, both in the central nervous system and in peripheral organs. As validated drug targets for depression and Parkinson's disease, the elucidation of their crystal structures was an essential step to guide drug design investigations. The development of the heterologous expression system of MAO B in Pichia pastoris and the identification of the detergent, buffer, and precipitant conditions allowed to determine the first crystal structure of human MAO B in 2002. A detailed protocol to obtain reproducible MAO B crystals is described.


Subject(s)
Monoamine Oxidase , Parkinson Disease , Crystallization , Detergents , Drug Design , Humans , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism
7.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233054

ABSTRACT

Bladder cancer is the 10th most common cancer in the world and has a high risk of recurrence and metastasis. In order to sustain high energetic needs, cancer cells undergo complex metabolic adaptations, such as a switch toward aerobic glycolysis, that can be exploited therapeutically. Reactive oxygen species (ROS) act as key regulators of cancer metabolic reprogramming and tumorigenesis, but the sources of ROS remain unidentified. Monoamine oxidases (MAOs) are mitochondrial enzymes that generate H2O2 during the breakdown of catecholamines and serotonin. These enzymes are particularly important in neurological disorders, but recently, a new link between MAOs and cancer has been uncovered, involving their production of ROS. At present, the putative role of MAOs in bladder cancer has never been evaluated. We observed that human urothelial tumor explants and the bladder cancer cell line AY27 expressed both MAO-A and MAO-B isoforms. Selective inhibition of MAO-A or MAO-B limited mitochondrial ROS accumulation, cell cycle progression and proliferation of bladder cancer cells, while only MAO-A inhibition prevented cell motility. To test whether ROS contributed to MAO-induced tumorigenesis, we used a mutated form of MAO-A which was unable to produce H2O2. Adenoviral transduction of the WT MAO-A stimulated the proliferation and migration of AY27 cells while the Lys305Met MAO-A mutant was inactive. This was consistent with the fact that the antioxidant Trolox strongly impaired proliferation and cell cycle progression. Most interestingly, AY27 cells were highly dependent on glucose metabolism to sustain their growth, and MAO inhibitors potently reduced glycolysis and oxidative phosphorylation, due to pyruvate depletion. Accordingly, MAO inhibitors decreased the expression of proteins involved in glucose transport (GLUT1) and transformation (HK2). In conclusion, urothelial cancer cells are characterized by a metabolic shift toward glucose-dependent metabolism, which is important for cell growth and is under the regulation of MAO-dependent oxidative stress.


Subject(s)
Carcinoma , Urinary Bladder Neoplasms , Antioxidants/metabolism , Carcinogenesis/metabolism , Carcinoma/metabolism , Catecholamines/metabolism , Cell Proliferation , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Oxidative Stress , Pyruvates/metabolism , Reactive Oxygen Species/metabolism , Serotonin/metabolism , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/metabolism
8.
Biochimie ; 199: 23-35, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398441

ABSTRACT

Among the functions exerted by eukaryotic lactate dehydrogenases, it is of importance the generation of lactate in muscles subjected to fatigue or to limited oxygen availability, with both these conditions triggering a decrease of cellular pH. However, the mutual dependence between lactate dehydrogenase (LDH) catalytic action and lactic acidosis is far from being fully understood. Here we show that the tetrameric LDH from rabbit skeletal muscle undergoes allosteric transitions as a function of pH, i.e. the enzyme obeys Michaelis-Menten kinetics at neutral or slightly alkaline pH values, and features sigmoidal kinetics at pH 6.5 or lower. Remarkably, we also report that a significant dissociation of tetrameric rabbit LDH occurs under acidic conditions, with pyruvate/NAD+ or citrate counteracting this effect. Moreover, citrate strongly activates rabbit LDH, inducing the enzyme to feature Michaelis-Menten kinetics. Further, using primary rabbit skeletal muscle cells we tested the generation of lactate as a function of pH, and we detected a parallel decrease of cytosolic pH and secretion of lactate. Overall, our observations indicate that lactic acidosis is antagonized by LDH dissociation, the occurrence of which is regulated by citrate and by allosteric transitions of the enzyme induced by pyruvate.


Subject(s)
Acidosis, Lactic , L-Lactate Dehydrogenase , Animals , Citrates , Hydrogen-Ion Concentration , Kinetics , L-Lactate Dehydrogenase/metabolism , Lactic Acid , Muscle, Skeletal/metabolism , Pyruvic Acid , Rabbits
9.
ACS Med Chem Lett ; 13(3): 499-506, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35300078

ABSTRACT

Multitarget directed ligands (MTDLs) represent a promising frontier in tackling the complexity of multifactorial pathologies. The synergistic inhibition of monoamine oxidase B (MAO B) and acetylcholinesterase (AChE) is believed to provide a potentiated effect in the treatment of Alzheimer's disease. Among previously reported micromolar or sub-micromolar coumarin-bearing dual inhibitors, compound 1 returned a tight-binding inhibition of MAO B (K i = 4.5 µM) and a +5.5 °C increase in the enzyme T m value. Indeed, the X-ray crystal structure revealed that binding of 1 produces unforeseen conformational changes at the MAO B entrance cavity. Interestingly, 1 showed great shape complementarity with the AChE enzymatic gorge, being deeply buried from the catalytic anionic subsite (CAS) to the peripheral anionic subsite (PAS) and causing significant structural changes in the active site. These findings provide structural templates for further development of dual MAO B and AChE inhibitors.

10.
ACS Med Chem Lett ; 12(7): 1151-1158, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34262643

ABSTRACT

A library of monosubstituted chalcones (1-17) bearing electron-donating and electron-withdrawing groups on both aromatic rings were selected. The cell viability on human tumor cell lines was evaluated first. The compounds unable to induce detectable cytotoxicity (1, 13, and 14) were tested using the monoamine oxidase (MAO) activity assay. Interestingly, they inhibit MAO-B, acting as competitive inhibitors, with 13 and 14 showing the best profiles. In particular, 13 exhibited a potency higher than that of safinamide, taken as a reference. Docking studies and crystallographic analysis showed that in human MAO-B 13 binds with the halogen-substituted aromatic ring in the entrance cavity, similar to safinamide, whereas 14 is accommodated in the opposite way. The main conclusion of this cell biology, biochemistry, and structural study is to highlights 13 as a chalcone derivative that is worth consideration for the development of novel MAO-B-selective inhibitors for the treatment of neurodegenerative diseases.

11.
Chembiochem ; 22(4): 743-753, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33030752

ABSTRACT

Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Cysteine/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Proteome/analysis , Proteome/metabolism , Cysteine/metabolism , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Humans , Proteome/chemistry
12.
Enzymes ; 47: 63-86, 2020.
Article in English | MEDLINE | ID: mdl-32951835

ABSTRACT

This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.


Subject(s)
Flavoproteins , Oxidoreductases , Biocatalysis , Catalysis , Flavins/chemistry , Flavoproteins/chemistry , Oxidoreductases/chemistry , Protein Engineering
13.
J Biol Chem ; 295(35): 12461-12473, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32661196

ABSTRACT

UDP-glucuronic acid is converted to UDP-galacturonic acid en route to a variety of sugar-containing metabolites. This reaction is performed by a NAD+-dependent epimerase belonging to the short-chain dehydrogenase/reductase family. We present several high-resolution crystal structures of the UDP-glucuronic acid epimerase from Bacillus cereus The geometry of the substrate-NAD+ interactions is finely arranged to promote hydride transfer. The exquisite complementarity between glucuronic acid and its binding site is highlighted by the observation that the unligated cavity is occupied by a cluster of ordered waters whose positions overlap the polar groups of the sugar substrate. Co-crystallization experiments led to a structure where substrate- and product-bound enzymes coexist within the same crystal. This equilibrium structure reveals the basis for a "swing and flip" rotation of the pro-chiral 4-keto-hexose-uronic acid intermediate that results from glucuronic acid oxidation, placing the C4' atom in position for receiving a hydride ion on the opposite side of the sugar ring. The product-bound active site is almost identical to that of the substrate-bound structure and satisfies all hydrogen-bonding requirements of the ligand. The structure of the apoenzyme together with the kinetic isotope effect and mutagenesis experiments further outlines a few flexible loops that exist in discrete conformations, imparting structural malleability required for ligand rotation while avoiding leakage of the catalytic intermediate and/or side reactions. These data highlight the double nature of the enzymatic mechanism: the active site features a high degree of precision in substrate recognition combined with the flexibility required for intermediate rotation.


Subject(s)
Bacillus cereus/enzymology , Bacterial Proteins/chemistry , Carbohydrate Epimerases/chemistry , Crystallography, X-Ray , Ligands , NAD/chemistry , Oxidation-Reduction , Rotation , Uridine Diphosphate Sugars/chemistry
14.
ACS Chem Biol ; 15(7): 1795-1800, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32589395

ABSTRACT

Cardiac senescence is a typical chronic frailty condition in the elderly population, and cellular aging is often associated with oxidative stress. The mitochondrial-membrane flavoenzyme monoamine oxidase A (MAO A) catalyzes the oxidative deamination of neurotransmitters, and its expression increases in aged hearts. We produced recombinant human MAO A variants at Lys305 that play a key role in O2 reactivity leading to H2O2 production. The K305Q variant is as active as the wild-type enzyme, whereas K305M and K305S have 200-fold and 100-fold lower kcat values and similar Km. Under anaerobic conditions, K305M MAO A was normally reduced by substrate, whereas reoxidation by O2 was much slower but could be accomplished by quinone electron acceptors. When overexpressed in cardiomyoblasts by adenoviral vectors, the K305M variant showed enzymatic turnover similar to that of the wild-type but displayed decreased ROS levels and senescence markers. These results might translate into pharmacological treatments as MAO inhibitors may attenuate cardiomyocytes aging.


Subject(s)
Aging/metabolism , Cellular Senescence/physiology , Hydrogen Peroxide/metabolism , Monoamine Oxidase/metabolism , Myocardium/metabolism , Animals , Cell Line , Humans , Lysine/genetics , Monoamine Oxidase/genetics , Mutation , Myoblasts, Cardiac/metabolism , Protein Engineering , Rats
15.
ChemMedChem ; 15(15): 1394-1397, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32459875

ABSTRACT

Diphenylene iodonium (DPI) is known for its inhibitory activities against many flavin- and heme-dependent enzymes, and is often used as an NADPH oxidase inhibitor. We probed the efficacy of DPI on two well-known drug targets, the human monoamine oxidases MAO A and B. UV-visible spectrophotometry and steady-state kinetics experiments demonstrate that DPI acts as a competitive and reversible MAO inhibitor with Ki values of 1.7 and 0.3 µM for MAO A and MAO B, respectively. Elucidation of the crystal structure of human MAO B bound to the inhibitor revealed that DPI binds deeply in the active-site cavity to establish multiple hydrophobic interactions with the surrounding side chains and the flavin. These data prove that DPI is a genuine MAO inhibitor and that the inhibition mechanism does not involve a reaction with the reduced flavin. This binding and inhibitory activity against the MAOs, two major reactive oxygen species (ROS)-producing enzymes, will have to be carefully considered when interpreting experiments that rely on DPI for target validation and chemical biology studies on ROS functions.


Subject(s)
Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemistry , Onium Compounds , Structure-Activity Relationship
16.
ChemMedChem ; 15(7): 643-658, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32003940

ABSTRACT

LSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring. Further fragments obtained by chemical manipulation applied on the TCP scaffold (compounds 4 a-i) were also prepared. When tested against LSD1, most of 1 and 3 exhibited IC50 values in the low nanomolar range, with 1 e and 3 a,d,f,g being also the most selective respect to monoamine oxidases. In MV4-11 AML and NB4 APL cells compounds 3 were the most potent, displaying up to sub-micromolar cell growth inhibition against both cell lines (3 a) or against NB4 cells (3 c). The most potent compounds in cellular assays were also able to induce the expression of LSD1 target genes, such as GFI-1b, ITGAM, and KCTD12, as functional read-out for LSD1 inhibition. Mouse and human intrinsic clearance data highlighted the high metabolic stability of compounds 3 a, 3 d and 3 g. Further studies will be performed on the new compounds 3 a and 3 c to assess their anticancer potential in different cancer contexts.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Tranylcypromine/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Structure-Activity Relationship , Tranylcypromine/chemical synthesis , Tranylcypromine/chemistry
17.
J Med Chem ; 63(3): 1361-1387, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31917923

ABSTRACT

The resurgence of interest in monoamine oxidases (MAOs) has been fueled by recent correlations of this enzymatic activity with cardiovascular, neurological, and oncological disorders. This has promoted increased research into selective MAO-A and MAO-B inhibitors. Here, we shed light on how selective inhibition of MAO-A and MAO-B can be achieved by geometric isomers of cis- and trans-1-propargyl-4-styrylpiperidines. While the cis isomers are potent human MAO-A inhibitors, the trans analogues selectively target only the MAO-B isoform. The inhibition was studied by kinetic analysis, UV-vis spectrum measurements, and X-ray crystallography. The selective inhibition of the MAO-A and MAO-B isoforms was confirmed ex vivo in mouse brain homogenates, and additional in vivo studies in mice show the therapeutic potential of 1-propargyl-4-styrylpiperidines for central nervous system disorders. This study represents a unique case of stereoselective activity of cis/trans isomers that can discriminate between structurally related enzyme isoforms.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Monoamine Oxidase Inhibitors/therapeutic use , Piperidines/therapeutic use , Styrenes/therapeutic use , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/metabolism , Brain , Catalytic Domain , Humans , Isoenzymes/antagonists & inhibitors , Kinetics , Male , Mice , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase/chemistry , Monoamine Oxidase/classification , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/metabolism , Piperidines/chemical synthesis , Piperidines/metabolism , Protein Binding , Stereoisomerism , Structure-Activity Relationship , Styrenes/chemical synthesis , Styrenes/metabolism
18.
Biochemistry ; 57(43): 6209-6218, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30272958

ABSTRACT

Glycerol is a major byproduct of biodiesel production, and enzymes that oxidize this compound have been long sought after. The recently described alcohol oxidase from the white-rot basidiomycete Phanerochaete chrysosporium (PcAOX) was reported to feature very mild activity on glycerol. Here, we describe the comprehensive structural and biochemical characterization of this enzyme. PcAOX was expressed in Escherichia coli in high yields and displayed high thermostability. Steady-state kinetics revealed that PcAOX is highly active toward methanol, ethanol, and 1-propanol ( kcat = 18, 19, and 11 s-1, respectively), but showed very limited activity toward glycerol ( kobs = 0.2 s-1 at 2 M substrate). The crystal structure of the homo-octameric PcAOX was determined at a resolution of 2.6 Å. The catalytic center is a remarkable solvent-inaccessible cavity located at the re side of the flavin cofactor. Its small size explains the observed preference for methanol and ethanol as best substrates. These findings led us to design several cavity-enlarging mutants with significantly improved activity toward glycerol. Among them, the F101S variant had a high kcat value of 3 s-1, retaining a high degree of thermostability. The crystal structure of F101S PcAOX was solved, confirming the site of mutation and the larger substrate-binding pocket. Our data demonstrate that PcAOX is a very promising enzyme for glycerol biotransformation.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Glycerol/metabolism , Phanerochaete/enzymology , Protein Engineering/methods , Alcohol Oxidoreductases/genetics , Catalysis , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Substrate Specificity
19.
J Neural Transm (Vienna) ; 125(11): 1567-1579, 2018 11.
Article in English | MEDLINE | ID: mdl-30167931

ABSTRACT

The first crystal structure of mammalian monoamine oxidases (MAOs) was solved in 2002; almost 65 years after, these FAD-dependent enzymes were discovered and classified as responsible for the oxidation of aromatic neurotransmitters. Both MAO A and MAO B feature a two-domain topology characterized by the Rossmann fold, interacting with dinucleotide cofactors, which is intimately associated to a substrate-binding domain. This globular body is endowed with a C-terminal α-helix that anchors the protein to the outer mitochondrial phospholipid bilayer. As monotopic membrane proteins, the structural elucidation of MAOs was a challenging task that required the screening of different detergent conditions for their purification and crystallization. MAO A and MAO B structures differ both in their oligomerization architecture and in details of their active sites. Purified human MAO B and rat MAO A are dimeric, whereas human MAO A was found to be monomeric, which is believed to result from the detergent treatments used to extract the protein from the membrane. The active site of MAOs consists of a hydrophobic cavity located in front of the flavin cofactor and extending to the protein surface. Some structural features are highly conserved in the two isozymes, such as a Tyr-Tyr aromatic sandwich in front of the flavin ring and a Lys residue hydrogen-bonded to the cofactor N5 atom, whereas a pair of gating residues (Phe208/Ile335 in MAO A; Ile199/Tyr326 in MAO B) specifically determines the different substrate and inhibitor properties of the two enzymes.


Subject(s)
Monoamine Oxidase/chemistry , Animals , Humans
20.
Aging Cell ; 17(5): e12811, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30003648

ABSTRACT

Cellular senescence, the irreversible cell cycle arrest observed in somatic cells, is an important driver of age-associated diseases. Mitochondria have been implicated in the process of senescence, primarily because they are both sources and targets of reactive oxygen species (ROS). In the heart, oxidative stress contributes to pathological cardiac ageing, but the mechanisms underlying ROS production are still not completely understood. The mitochondrial enzyme monoamine oxidase-A (MAO-A) is a relevant source of ROS in the heart through the formation of H2 O2 derived from the degradation of its main substrates, norepinephrine (NE) and serotonin. However, the potential link between MAO-A and senescence has not been previously investigated. Using cardiomyoblasts and primary cardiomyocytes, we demonstrate that chronic MAO-A activation mediated by synthetic (tyramine) and physiological (NE) substrates induces ROS-dependent DNA damage response, activation of cyclin-dependent kinase inhibitors p21cip , p16ink4a , and p15ink4b and typical features of senescence such as cell flattening and SA-ß-gal activity. Moreover, we observe that ROS produced by MAO-A lead to the accumulation of p53 in the cytosol where it inhibits parkin, an important regulator of mitophagy, resulting in mitochondrial dysfunction. Additionally, we show that the mTOR kinase contributes to mitophagy dysfunction by enhancing p53 cytoplasmic accumulation. Importantly, restoration of mitophagy, either by overexpression of parkin or inhibition of mTOR, prevents mitochondrial dysfunction and induction of senescence. Altogether, our data demonstrate a novel link between MAO-A and senescence in cardiomyocytes and provides mechanistic insights into the potential role of MAO-dependent oxidative stress in age-related pathologies.


Subject(s)
Cellular Senescence , Mitophagy , Monoamine Oxidase/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/metabolism , Animals , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Humans , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Phenotype , Signal Transduction/drug effects , Sirolimus/pharmacology , Stress, Physiological/drug effects , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...