Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
bioRxiv ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38562901

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.

2.
Adv Sci (Weinh) ; 11(9): e2306576, 2024 Mar.
Article En | MEDLINE | ID: mdl-38093507

Sex disparities in serum bile acid (BA) levels and Alzheimer's disease (AD) prevalence have been established. However, the precise link between changes in serum BAs and AD development remains elusive. Here, authors quantitatively determined 33 serum BAs and 58 BA features in 4 219 samples collected from 1 180 participants from the Alzheimer's Disease Neuroimaging Initiative. The findings revealed that these BA features exhibited significant correlations with clinical stages, encompassing cognitively normal (CN), early and late mild cognitive impairment, and AD, as well as cognitive performance. Importantly, these associations are more pronounced in men than women. Among participants with progressive disease stages (n = 660), BAs underwent early changes in men, occurring before AD. By incorporating BA features into diagnostic and predictive models, positive enhancements are achieved for all models. The area under the receiver operating characteristic curve improved from 0.78 to 0.91 for men and from 0.76 to 0.83 for women for the differentiation of CN and AD. Additionally, the key findings are validated in a subset of participants (n = 578) with cerebrospinal fluid amyloid-beta and tau levels. These findings underscore the role of BAs in AD progression, offering potential improvements in the accuracy of AD prediction.


Alzheimer Disease , Cognitive Dysfunction , Male , Humans , Female , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Bile Acids and Salts
3.
medRxiv ; 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38076824

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

4.
Sci Rep ; 13(1): 13752, 2023 08 23.
Article En | MEDLINE | ID: mdl-37612324

Integration of the omics data, including metabolomics and proteomics, provides a unique opportunity to search for new associations within metabolic disorders, including Alzheimer's disease. Using metabolomics, we have previously profiled oxylipins, endocannabinoids, bile acids, and steroids in 293 CSF and 202 matched plasma samples from AD cases and healthy controls and identified both central and peripheral markers of AD pathology within inflammation-regulating cytochrome p450/soluble epoxide hydrolase pathway. Additionally, using proteomics, we have identified five cerebrospinal fluid protein panels, involved in the regulation of energy metabolism, vasculature, myelin/oligodendrocyte, glia/inflammation, and synapses/neurons, affected in AD, and reflective of AD-related changes in the brain. In the current manuscript, using metabolomics-proteomics data integration, we describe new associations between peripheral and central lipid mediators, with the above-described CSF protein panels. Particularly strong associations were observed between cytochrome p450/soluble epoxide hydrolase metabolites, bile acids, and proteins involved in glycolysis, blood coagulation, and vascular inflammation and the regulators of extracellular matrix. Those metabolic associations were not observed at the gene-co-expression level in the central nervous system. In summary, this manuscript provides new information regarding Alzheimer's disease, linking both central and peripheral metabolism, and illustrates the necessity for the "omics" data integration to uncover associations beyond gene co-expression.


Alzheimer Disease , Humans , Epoxide Hydrolases , Proteomics , Central Nervous System , Energy Metabolism , Metabolomics , Bile Acids and Salts , Endocannabinoids
5.
medRxiv ; 2023 Jul 27.
Article En | MEDLINE | ID: mdl-37546878

Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.

6.
medRxiv ; 2023 Jun 21.
Article En | MEDLINE | ID: mdl-37398438

Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.

7.
Alzheimers Dement ; 19(11): 4805-4816, 2023 11.
Article En | MEDLINE | ID: mdl-37017243

INTRODUCTION: The ketogenic diet (KD) is an intriguing therapeutic candidate for Alzheimer's disease (AD) given its protective effects against metabolic dysregulation and seizures. Gut microbiota are essential for KD-mediated neuroprotection against seizures as well as modulation of bile acids, which play a major role in cholesterol metabolism. These relationships motivated our analysis of gut microbiota and metabolites related to cognitive status following a controlled KD intervention compared with a low-fat-diet intervention. METHODS: Prediabetic adults, either with mild cognitive impairment (MCI) or cognitively normal (CN), were placed on either a low-fat American Heart Association diet or high-fat modified Mediterranean KD (MMKD) for 6 weeks; then, after a 6-week washout period, they crossed over to the alternate diet. We collected stool samples for shotgun metagenomics and untargeted metabolomics at five time points to investigate individuals' microbiome and metabolome throughout the dietary interventions. RESULTS: Participants with MCI on the MMKD had lower levels of GABA-producing microbes Alistipes sp. CAG:514 and GABA, and higher levels of GABA-regulating microbes Akkermansia muciniphila. MCI individuals with curcumin in their diet had lower levels of bile salt hydrolase-containing microbes and an altered bile acid pool, suggesting reduced gut motility. DISCUSSION: Our results suggest that the MMKD may benefit adults with MCI through modulation of GABA levels and gut-transit time.


Alzheimer Disease , Microbiota , United States , Humans , Adult , Alzheimer Disease/metabolism , Diet, Fat-Restricted , Metabolome/physiology , Seizures , Ketone Bodies , gamma-Aminobutyric Acid/metabolism
8.
Alzheimers Dement ; 2022 Jul 13.
Article En | MEDLINE | ID: mdl-35829654

INTRODUCTION: Alzheimer's disease (AD) is accompanied by metabolic alterations both in the periphery and the central nervous system. However, so far, a global view of AD-associated metabolic changes in the brain has been missing. METHODS: We metabolically profiled 500 samples from the dorsolateral prefrontal cortex. Metabolite levels were correlated with eight clinical parameters, covering both late-life cognitive performance and AD neuropathology measures. RESULTS: We observed widespread metabolic dysregulation associated with AD, spanning 298 metabolites from various AD-relevant pathways. These included alterations to bioenergetics, cholesterol metabolism, neuroinflammation, and metabolic consequences of neurotransmitter ratio imbalances. Our findings further suggest impaired osmoregulation as a potential pathomechanism in AD. Finally, inspecting the interplay of proteinopathies provided evidence that metabolic associations were largely driven by tau pathology rather than amyloid beta pathology. DISCUSSION: This work provides a comprehensive reference map of metabolic brain changes in AD that lays the foundation for future mechanistic follow-up studies.

9.
Alzheimers Res Ther ; 13(1): 149, 2021 09 06.
Article En | MEDLINE | ID: mdl-34488866

BACKGROUND: Alzheimer's disease, cardiovascular disease, and other cardiometabolic disorders may share inflammatory origins. Lipid mediators, including oxylipins, endocannabinoids, bile acids, and steroids, regulate inflammation, energy metabolism, and cell proliferation with well-established involvement in cardiometabolic diseases. However, their role in Alzheimer's disease is poorly understood. Here, we describe the analysis of plasma and cerebrospinal fluid lipid mediators in a case-control comparison of ~150 individuals with Alzheimer's disease and ~135 healthy controls, to investigate this knowledge gap. METHODS: Lipid mediators were measured using targeted quantitative mass spectrometry. Data were analyzed using the analysis of covariates, adjusting for sex, age, and ethnicity. Partial least square discriminant analysis identified plasma and cerebrospinal fluid lipid mediator discriminates of Alzheimer's disease. Alzheimer's disease predictive models were constructed using machine learning combined with stepwise logistic regression. RESULTS: In both plasma and cerebrospinal fluid, individuals with Alzheimer's disease had elevated cytochrome P450/soluble epoxide hydrolase pathway components and decreased fatty acid ethanolamides compared to healthy controls. Circulating metabolites of soluble epoxide hydrolase and ethanolamides provide Alzheimer's disease predictors with areas under receiver operator characteristic curves ranging from 0.82 to 0.92 for cerebrospinal fluid and plasma metabolites, respectively. CONCLUSIONS: Previous studies report Alzheimer's disease-associated soluble epoxide hydrolase upregulation in the brain and that endocannabinoid metabolism provides an adaptive response to neuroinflammation. This study supports the involvement of P450-dependent and endocannabinoid metabolism in Alzheimer's disease. The results further suggest that combined pharmacological intervention targeting both metabolic pathways may have therapeutic benefits for Alzheimer's disease.


Alzheimer Disease , Epoxide Hydrolases , Cytochrome P-450 Enzyme System , Fatty Acids , Humans , Oxylipins
10.
Brain Commun ; 3(3): fcab139, 2021.
Article En | MEDLINE | ID: mdl-34396103

Metabolomics in the Alzheimer's Disease Neuroimaging Initiative cohort provides a powerful tool for mapping biochemical changes in Alzheimer's disease, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-ß deposition in Alzheimer's disease. We examined 140 serum metabolites and their associations with brain amyloid-ß deposition, cognition and conversion from mild cognitive impairment to Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative. Processed [18F] Florbetapir PET images were used to perform a voxel-wise statistical analysis of the effect of metabolite levels on amyloid-ß accumulation across the whole brain. We performed a multivariable regression analysis using age, sex, body mass index, apolipoprotein E ε4 status and study phase as covariates. We identified nine metabolites as significantly associated with amyloid-ß deposition after multiple comparison correction. Higher levels of one acylcarnitine (C3; propionylcarnitine) and one biogenic amine (kynurenine) were associated with decreased amyloid-ß accumulation and higher memory scores. However, higher levels of seven phosphatidylcholines (lysoPC a C18:2, PC aa C42:0, PC ae C42:3, PC ae C44:3, PC ae C44:4, PC ae C44:5 and PC ae C44:6) were associated with increased brain amyloid-ß deposition. In addition, higher levels of PC ae C44:4 were significantly associated with lower memory and executive function scores and conversion from mild cognitive impairment to Alzheimer's disease dementia. Our findings suggest that dysregulation of peripheral phosphatidylcholine metabolism is associated with earlier pathological changes noted in Alzheimer's disease as measured by brain amyloid-ß deposition as well as later clinical features including changes in memory and executive functioning. Perturbations in phosphatidylcholine metabolism may point to issues with membrane restructuring leading to the accumulation of amyloid-ß in the brain. Additional studies are needed to explore whether these metabolites play a causal role in the pathogenesis of Alzheimer's disease or if they are biomarkers for systemic changes during preclinical phases of the disease.

11.
Sci Rep ; 10(1): 14059, 2020 08 20.
Article En | MEDLINE | ID: mdl-32820198

The incidence of Alzheimer's disease (AD) increases with age and is becoming a significant cause of worldwide morbidity and mortality. However, the metabolic perturbation behind the onset of AD remains unclear. In this study, we performed metabolite profiling in both brain (n = 109) and matching serum samples (n = 566) to identify differentially expressed metabolites and metabolic pathways associated with neuropathology and cognitive performance and to identify individuals at high risk of developing cognitive impairment. The abundances of 6 metabolites, glycolithocholate (GLCA), petroselinic acid, linoleic acid, myristic acid, palmitic acid, palmitoleic acid and the deoxycholate/cholate (DCA/CA) ratio, along with the dysregulation scores of 3 metabolic pathways, primary bile acid biosynthesis, fatty acid biosynthesis, and biosynthesis of unsaturated fatty acids showed significant differences across both brain and serum diagnostic groups (P-value < 0.05). Significant associations were observed between the levels of differential metabolites/pathways and cognitive performance, neurofibrillary tangles, and neuritic plaque burden. Metabolites abundances and personalized metabolic pathways scores were used to derive machine learning models, respectively, that could be used to differentiate cognitively impaired persons from those without cognitive impairment (median area under the receiver operating characteristic curve (AUC) = 0.772 for the metabolite level model; median AUC = 0.731 for the pathway level model). Utilizing these two models on the entire baseline control group, we identified those who experienced cognitive decline in the later years (AUC = 0.804, sensitivity = 0.722, specificity = 0.749 for the metabolite level model; AUC = 0.778, sensitivity = 0.633, specificity = 0.825 for the pathway level model) and demonstrated their pre-AD onset prediction potentials. Our study provides a proof-of-concept that it is possible to discriminate antecedent cognitive impairment in older adults before the onset of overt clinical symptoms using metabolomics. Our findings, if validated in future studies, could enable the earlier detection and intervention of cognitive impairment that may halt its progression.


Cognition Disorders/blood , Metabolomics , Aged , Aged, 80 and over , Alzheimer Disease/blood , Cognition Disorders/diagnosis , Cognition Disorders/psychology , Disease Progression , Female , Humans , Longitudinal Studies , Male , Neuropsychological Tests , Proof of Concept Study
12.
Nat Commun ; 11(1): 1148, 2020 03 02.
Article En | MEDLINE | ID: mdl-32123170

Late-onset Alzheimer's disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine.


Alzheimer Disease/blood , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Blood/metabolism , Metabolome/genetics , Aged , Alzheimer Disease/diagnostic imaging , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cohort Studies , Female , Genotype , Humans , Male , Mitochondria/genetics , Mitochondria/metabolism , Positron-Emission Tomography , Sex Factors
13.
Sci Data ; 6(1): 212, 2019 10 17.
Article En | MEDLINE | ID: mdl-31624257

Alzheimer's disease (AD) is the most common cause of dementia. The mechanism of disease development and progression is not well understood, but increasing evidence suggests multifactorial etiology, with a number of genetic, environmental, and aging-related factors. There is a growing body of evidence that metabolic defects may contribute to this complex disease. To interrogate the relationship between system level metabolites and disease susceptibility and progression, the AD Metabolomics Consortium (ADMC) in partnership with AD Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for patients in the ADNI1 cohort. We used the Biocrates Bile Acids platform to evaluate the association of metabolic levels with disease risk and progression. We detail the quantitative metabolomics data generated on the baseline samples from ADNI1 and ADNIGO/2 (370 cognitively normal, 887 mild cognitive impairment, and 305 AD). Similar to our previous reports on ADNI1, we present the tools for data quality control and initial analysis. This data descriptor represents the third in a series of comprehensive metabolomics datasets from the ADMC on the ADNI.


Alzheimer Disease/metabolism , Bile Acids and Salts/blood , Metabolomics , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Male
14.
JAMA Netw Open ; 2(7): e197978, 2019 07 03.
Article En | MEDLINE | ID: mdl-31365104

Importance: Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD. Objective: To examine whether liver function markers are associated with cognitive dysfunction and the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD. Design, Setting, and Participants: In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-ß accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019. Exposures: Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables. Main Outcomes and Measures: Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-ß accumulation measured by [18F]florbetapir positron emission tomography. Results: Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: ß [SE], -0.465 [0.180]; P = .02 for memory composite score; ß [SE], -0.679 [0.215]; P = .006 for executive function composite score; ALT: ß [SE], 0.397 [0.128]; P = .006 for memory composite score; ß [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-ß 1-42 levels (ß [SE], -0.170 [0.061]; P = .04) and increased amyloid-ß deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (ß [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (ß [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (ß [SE], -0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-ß deposition (amyloid biomarkers), and reduced brain glucose metabolism (ß [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers). Conclusions and Relevance: Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.


Alzheimer Disease/diagnosis , Cognitive Dysfunction/blood , Liver Function Tests/statistics & numerical data , Neuroimaging/statistics & numerical data , Neuropsychological Tests/statistics & numerical data , Aged , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Alzheimer Disease/etiology , Aspartate Aminotransferases/blood , Bilirubin/blood , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cognition , Cognitive Dysfunction/complications , Cohort Studies , Female , Fluorodeoxyglucose F18 , Humans , Liver Function Tests/methods , Magnetic Resonance Imaging , Male , Neuroimaging/methods , Positron-Emission Tomography , Reproducibility of Results , Serum Albumin/analysis
15.
Alzheimers Dement ; 15(1): 76-92, 2019 01.
Article En | MEDLINE | ID: mdl-30337151

INTRODUCTION: Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). METHODS: Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple testing. RESULTS: In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response-related genes implicated in AD showed associations with BA profiles. DISCUSSION: We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in the pathogenesis of AD.


Alzheimer Disease , Bile Acids and Salts/metabolism , Cognitive Dysfunction/metabolism , Gastrointestinal Microbiome , Aged , Alzheimer Disease/microbiology , Alzheimer Disease/physiopathology , Bile Acids and Salts/blood , Dysbiosis , Female , Humans , Liver/metabolism , Male , Metabolome
16.
Alzheimers Dement ; 15(2): 232-244, 2019 02.
Article En | MEDLINE | ID: mdl-30337152

INTRODUCTION: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-ß deposition. METHOD: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET). RESULTS: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aß1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION: This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.


Alzheimer Disease/pathology , Bile Acids and Salts , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/pathology , Neuroimaging , Aged , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Bile Acids and Salts/blood , Bile Acids and Salts/metabolism , Cognitive Dysfunction/cerebrospinal fluid , Female , Fluorodeoxyglucose F18/metabolism , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Prospective Studies , tau Proteins/cerebrospinal fluid
17.
Arterioscler Thromb Vasc Biol ; 38(1): 275-282, 2018 01.
Article En | MEDLINE | ID: mdl-29191927

OBJECTIVE: Exposure to mobile source emissions is nearly ubiquitous in developed nations and is associated with multiple adverse health outcomes. There is an ongoing need to understand the specificity of traffic exposure associations with vascular outcomes, particularly in individuals with cardiovascular disease. APPROACH AND RESULTS: We performed a cross-sectional study using 2124 individuals residing in North Carolina, United States, who received a cardiac catheterization at the Duke University Medical Center. Traffic-related exposure was assessed via 2 metrics: (1) the distance between the primary residence and the nearest major roadway; and (2) location of the primary residence in regions defined based on local traffic patterns. We examined 4 cardiovascular disease outcomes: hypertension, peripheral arterial disease, the number of diseased coronary vessels, and recent myocardial infarction. Statistical models were adjusted for race, sex, smoking, type 2 diabetes mellitus, body mass index, hyperlipidemia, and home value. Results are expressed in terms of the odds ratio (OR). A 23% decrease in residential distance to major roadways was associated with higher prevalence of peripheral arterial disease (OR=1.29; 95% confidence interval, 1.08-1.55) and hypertension (OR=1.15; 95% confidence interval, 1.01-1.31). Associations with peripheral arterial disease were strongest in men (OR=1.42; 95% confidence interval, 1.17-1.74) while associations with hypertension were strongest in women (OR=1.21; 95% confidence interval, 0.99-1.49). Neither myocardial infarction nor the number of diseased coronary vessels were associated with traffic exposure. CONCLUSIONS: Traffic-related exposure is associated with peripheral arterial disease and hypertension while no associations are observed for 2 coronary-specific vascular outcomes.


Cardiac Catheterization , Hypertension/diagnosis , Hypertension/epidemiology , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Residence Characteristics , Traffic-Related Pollution/adverse effects , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , North Carolina/epidemiology , Prevalence , Risk Assessment , Risk Factors
18.
Pac Symp Biocomput ; 23: 280-291, 2018.
Article En | MEDLINE | ID: mdl-29218889

The importance of open data has been increasingly recognized in recent years. Although the sharing and reuse of clinical data for translational research lags behind best practices in biological science, a number of patient-derived datasets exist and have been published enabling translational research spanning multiple scales from molecular to organ level, and from patients to populations. In seeking to replicate metabolomic biomarker results in Alzheimer's disease our team identified three independent cohorts in which to compare findings. Accessing the datasets associated with these cohorts, understanding their content and provenance, and comparing variables between studies was a valuable exercise in exploring the principles of open data in practice. It also helped inform steps taken to make the original datasets available for use by other researchers. In this paper we describe best practices and lessons learned in attempting to identify, access, understand, and analyze these additional datasets to advance research reproducibility, as well as steps taken to facilitate sharing of our own data.


Alzheimer Disease/metabolism , Information Dissemination/methods , Metabolomics/statistics & numerical data , Biomarkers/metabolism , Computational Biology/methods , Databases, Factual/statistics & numerical data , Humans
19.
Sci Data ; 4: 170140, 2017 10 17.
Article En | MEDLINE | ID: mdl-29039849

Alzheimer's disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.


Alzheimer Disease , Metabolomics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cognitive Dysfunction , Cohort Studies , Humans , Neuroimaging
20.
Alzheimers Dement ; 13(9): 965-984, 2017 Sep.
Article En | MEDLINE | ID: mdl-28341160

INTRODUCTION: The Alzheimer's Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer's disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance. METHODS: Fasting serum samples from the Alzheimer's Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted. RESULTS: Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aß1-42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease. DISCUSSION: Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery.


Alzheimer Disease/blood , Alzheimer Disease/complications , Metabolic Diseases/etiology , Metabolic Networks and Pathways/physiology , Aged , Aged, 80 and over , Aging/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Amino Acids/blood , Amyloid beta-Peptides/metabolism , Aniline Compounds/metabolism , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cohort Studies , Cross-Sectional Studies , Fasting , Female , Humans , Male , Metabolic Diseases/blood , Metabolic Diseases/cerebrospinal fluid , Metabolic Diseases/diagnostic imaging , Metabolomics/methods , Peptide Fragments/metabolism , Phosphatidylcholines/blood , Phosphatidylcholines/metabolism , Sphingomyelins/blood , Thiazoles/metabolism , tau Proteins/cerebrospinal fluid
...