Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Front Physiol ; 14: 1163496, 2023.
Article in English | MEDLINE | ID: mdl-37362424

ABSTRACT

The last few years have witnessed dramatic advances in our understanding of the structure and function of the mammalian mito-ribosome. At the same time, the first attempts to elucidate the effects of mito-ribosomal fidelity (decoding accuracy) in disease have been made. Hence, the time is right to push an important frontier in our understanding of mitochondrial genetics, that is, the elucidation of the phenotypic effects of mtDNA variants affecting the functioning of the mito-ribosome. Here, we have assessed the structural and functional role of 93 mitochondrial (mt-) rRNA variants thought to be associated with deafness, including those located at non-conserved positions. Our analysis has used the structural description of the human mito-ribosome of the highest quality currently available, together with a new understanding of the phenotypic manifestation of mito-ribosomal-associated variants. Basically, any base change capable of inducing a fidelity phenotype may be considered non-silent. Under this light, out of 92 previously reported mt-rRNA variants thought to be associated with deafness, we found that 49 were potentially non-silent. We also dismissed a large number of reportedly pathogenic mtDNA variants, 41, as polymorphisms. These results drastically update our view on the implication of the primary sequence of mt-rRNA in the etiology of deafness and mitochondrial disease in general. Our data sheds much-needed light on the question of how mt-rRNA variants located at non-conserved positions may lead to mitochondrial disease and, most notably, provide evidence of the effect of haplotype context in the manifestation of some mt-rRNA variants.

2.
Eur J Hum Genet ; 31(2): 148-163, 2023 02.
Article in English | MEDLINE | ID: mdl-36513735

ABSTRACT

Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.


Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Pregnancy , Female , Humans , Genome-Wide Association Study , Mitochondrial Diseases/genetics , DNA, Mitochondrial/genetics , Genetic Testing/methods , Mitochondria/genetics
3.
BMJ Neurol Open ; 4(2): e000352, 2022.
Article in English | MEDLINE | ID: mdl-36518302

ABSTRACT

Background: Mitochondrial disorders are known to cause diverse neurological phenotypes which cause a diagnostic challenge to most neurologists. Pathogenic polymerase gamma (POLG) variants have been described as a cause of chronic progressive external ophthalmoplegia, which manifests with ptosis, horizontal and vertical eye movement restriction and myopathy. Autosomal dominant progressive external ophthalmoplegia is rarely associated with Parkinsonism responsive to levodopa. Methods: We report a case of a 58-year-old man who presented with an eye movement disorder then Parkinsonism who made his way through the myasthenia then the movement disorder clinic. Results: A diagnostic right tibialis anterior biopsy revealed classical hallmarks of mitochondrial disease, and genetic testing identified compound heterozygous pathogenic gene variants in the POLG gene. The patient was diagnosed with autosomal recessive POLG disease. Conclusions: It is important to maintain a high index of suspicion of pathogenic POLG variants in patients presenting with atypical Parkinsonism and ophthalmoplegia. Patients with POLG-related disease will usually have ptosis, and downgaze is typically preserved until late in the disease. Accurate diagnosis is essential for appropriate prognosis and genetic counselling.

4.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35617047

ABSTRACT

Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report 5 probands from 4 families who presented with ptosis and ophthalmoplegia as well as other clinical manifestations and multiple mtDNA deletions in muscle. We identified 3 RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and 2 homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal that primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.


Subject(s)
Mitochondrial Diseases , Ribonucleotide Reductases , DNA Replication , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mitochondrial Diseases/genetics , Nucleosides , Nucleotides/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism
5.
Ann Neurol ; 91(1): 117-130, 2022 01.
Article in English | MEDLINE | ID: mdl-34716721

ABSTRACT

OBJECTIVE: This observational cohort study aims to quantify disease burden over time, establish disease progression rates, and identify factors that may determine the disease course of Leigh syndrome. METHODS: Seventy-two Leigh syndrome children who completed the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) at baseline at 3.7 years (interquartile range [IQR] = 2.0-7.6) and follow-up assessments at 7.5 years (IQR = 3.7-11.0) in clinics were enrolled. Eighty-two percent of this cohort had a confirmed genetic diagnosis, with pathogenic variants in the MT-ATP6 and SURF1 genes being the most common cause. The total NPMDS scores denoted mild (0-14), moderate (15-25), and severe (>25) disease burden. Detailed clinical, neuroradiological, and molecular genetic findings were also analyzed. RESULTS: The median total NPMDS scores rose significantly (Z = -6.9, p < 0.001), and the percentage of children with severe disease burden doubled (22% → 42%) over 2.6 years of follow-up. Poor function (especially mobility, self-care, communication, feeding, and education) and extrapyramidal features contributed significantly to the disease burden (τb  ≈ 0.45-0.68, p < 0.001). These children also deteriorated to wheelchair dependence (31% → 57%), exclusive enteral feeding (22% → 46%), and one-to-one assistance for self-care (25% → 43%) during the study period. Twelve children (17%) died after their last NPMDS scores were recorded. These children had higher follow-up NPMDS scores (disease burden; p < 0.001) and steeper increase in NPMDS score per annum (disease progression; p < 0.001). Other predictors of poor outcomes include SURF1 gene variants (p < 0.001) and bilateral caudate changes on neuroimaging (p < 0.01). INTERPRETATION: This study has objectively defined the disease burden and progression of Leigh syndrome. Our analysis has also uncovered potential influences on the trajectory of this neurodegenerative condition. ANN NEUROL 2022;91:117-130.


Subject(s)
Leigh Disease , Child , Child, Preschool , Cohort Studies , Cost of Illness , Disease Progression , Female , Humans , Infant , Longitudinal Studies , Male
6.
Brain ; 145(2): 542-554, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34927673

ABSTRACT

In this retrospective, multicentre, observational cohort study, we sought to determine the clinical, radiological, EEG, genetics and neuropathological characteristics of mitochondrial stroke-like episodes and to identify associated risk predictors. Between January 1998 and June 2018, we identified 111 patients with genetically determined mitochondrial disease who developed stroke-like episodes. Post-mortem cases of mitochondrial disease (n = 26) were identified from Newcastle Brain Tissue Resource. The primary outcome was to interrogate the clinico-radiopathological correlates and prognostic indicators of stroke-like episode in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). The secondary objective was to develop a multivariable prediction model to forecast stroke-like episode risk. The most common genetic cause of stroke-like episodes was the m.3243A>G variant in MT-TL1 (n = 66), followed by recessive pathogenic POLG variants (n = 22), and 11 other rarer pathogenic mitochondrial DNA variants (n = 23). The age of first stroke-like episode was available for 105 patients [mean (SD) age: 31.8 (16.1)]; a total of 35 patients (32%) presented with their first stroke-like episode ≥40 years of age. The median interval (interquartile range) between first and second stroke-like episodes was 1.33 (2.86) years; 43% of patients developed recurrent stroke-like episodes within 12 months. Clinico-radiological, electrophysiological and neuropathological findings of stroke-like episodes were consistent with the hallmarks of medically refractory epilepsy. Patients with POLG-related stroke-like episodes demonstrated more fulminant disease trajectories than cases of m.3243A>G and other mitochondrial DNA pathogenic variants, in terms of the frequency of refractory status epilepticus, rapidity of progression and overall mortality. In multivariate analysis, baseline factors of body mass index, age-adjusted blood m.3243A>G heteroplasmy, sensorineural hearing loss and serum lactate were significantly associated with risk of stroke-like episodes in patients with the m.3243A>G variant. These factors informed the development of a prediction model to assess the risk of developing stroke-like episodes that demonstrated good overall discrimination (area under the curve = 0.87, 95% CI 0.82-0.93; c-statistic = 0.89). Significant radiological and pathological features of neurodegeneration were more evident in patients harbouring pathogenic mtDNA variants compared with POLG: brain atrophy on cranial MRI (90% versus 44%, P < 0.001) and reduced mean brain weight (SD) [1044 g (148) versus 1304 g (142), P = 0.005]. Our findings highlight the often idiosyncratic clinical, radiological and EEG characteristics of mitochondrial stroke-like episodes. Early recognition of seizures and aggressive instigation of treatment may help circumvent or slow neuronal loss and abate increasing disease burden. The risk-prediction model for the m.3243A>G variant can help inform more tailored genetic counselling and prognostication in routine clinical practice.


Subject(s)
MELAS Syndrome , Mitochondrial Diseases , Stroke , Adult , DNA, Mitochondrial/genetics , Humans , MELAS Syndrome/genetics , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Mutation , Retrospective Studies , Stroke/diagnostic imaging , Stroke/genetics
7.
Neuromuscul Disord ; 31(11): 1186-1193, 2021 11.
Article in English | MEDLINE | ID: mdl-34325999

ABSTRACT

Pathogenic variants in mitochondrial DNA (mtDNA) are associated with significant clinical heterogeneity with neuromuscular involvement commonly reported. Non-syndromic presentations of mtDNA disease continue to pose a diagnostic challenge and with genomic testing still necessitating a muscle biopsy in many cases. Here we describe an adult patient who presented with progressive ataxia, neuropathy and exercise intolerance in whom the application of numerous Mendelian gene panels had failed to make a genetic diagnosis. Muscle biopsy revealed characteristic mitochondrial pathology (cytochrome c oxidase deficient, ragged-red fibers) prompting a thorough investigation of the mitochondrial genome. Two heteroplasmic MT-CO2 gene variants (NC_012920.1: m.7887G>A and m.8250G>A) were identified, necessitating single fiber segregation and familial studies - including the biopsy of the patient's clinically-unaffected mother - to demonstrate pathogenicity of the novel m.7887G>A p.(Gly101Asp) variant and establishing this as the cause of the mitochondrial biochemical defects and clinical presentation. In the era of high throughput whole exome and genome sequencing, muscle biopsy remains a key investigation in the diagnosis of patients with non-syndromic presentations of adult-onset mitochondrial disease and fully defining the pathogenicity of novel mtDNA variants.


Subject(s)
Cerebellar Ataxia/diagnosis , Mitochondrial Diseases/diagnosis , Muscle, Skeletal/pathology , Mutation/genetics , Base Sequence , Biopsy , DNA, Mitochondrial , Diagnosis, Differential , Humans , Male , Middle Aged , Exome Sequencing
8.
Mol Biol Rep ; 48(3): 2093-2104, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33742325

ABSTRACT

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.


Subject(s)
Chromosomes, Human, Pair 2/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Ribosomal Proteins/genetics , Uniparental Disomy/genetics , Adolescent , Base Sequence , Brain/diagnostic imaging , Brain/pathology , Child, Preschool , Female , Fibroblasts/pathology , Homozygote , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Mitochondrial Diseases/pathology , Muscle, Skeletal/metabolism , Mutation/genetics , Oxidative Phosphorylation , Protein Biosynthesis , Young Adult
9.
Nat Commun ; 12(1): 1135, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602924

ABSTRACT

While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Mitochondria/genetics , Mutation/genetics , Nervous System Diseases/genetics , Transcription, Genetic , Adolescent , Adult , Child , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/chemistry , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Male , Nervous System Diseases/pathology , Oxidative Phosphorylation , Pedigree , Protein Domains , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Young Adult
10.
Genome Biol ; 21(1): 248, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943091

ABSTRACT

BACKGROUND: Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. RESULTS: To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. CONCLUSIONS: These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.


Subject(s)
DNA Polymerase gamma/genetics , DNA, Mitochondrial/analysis , Genetic Techniques , Mitochondrial Diseases/genetics , Sequence Deletion , Software , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , DNA Replication , DNA, Mitochondrial/metabolism , HEK293 Cells , Humans , Middle Aged , Quadriceps Muscle/chemistry , Quadriceps Muscle/pathology , Young Adult
13.
Neuromuscul Disord ; 30(4): 346-350, 2020 04.
Article in English | MEDLINE | ID: mdl-32305257

ABSTRACT

Progressive external ophthalmoplegia is typically associated with single or multiple mtDNA deletions but occasionally mtDNA single nucleotide variants within mitochondrial transfer RNAs (mt-tRNAs) are identified. We report a 34-year-old female sporadic patient with progressive external ophthalmoplegia accompanied by exercise intolerance but neither fixed weakness nor multisystemic involvement. Histopathologically, abundant COX-deficient fibres were present in muscle with immunofluorescence analysis confirming the loss of mitochondrial complex I and IV proteins. Molecular genetic analysis identified a rare heteroplasmic m.15990C>T mt-tRNAPro variant reported previously in a single patient with childhood-onset myopathy. The variant in our patient was restricted to muscle. Single muscle fibre analysis identified higher heteroplasmy load in COX-deficient fibres than COX-normal fibres, confirming segregation of high heteroplasmic load with a biochemical defect. Our case highlights the phenotypic variability typically observed with pathogenic mt-tRNA mutations, whilst the identification of a second case with the m.15990C>T mutation not only confirms pathogenicity but shows that de novo mt-tRNA point mutations can arise in multiple, unrelated patients.


Subject(s)
Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/physiopathology , RNA, Mitochondrial/genetics , RNA, Transfer/genetics , Adult , Female , Humans , Point Mutation
14.
Carcinogenesis ; 41(12): 1735-1745, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32255484

ABSTRACT

Functioning mitochondria are crucial for cancer metabolism, but aerobic glycolysis is still considered to be an important pathway for energy production in many tumor cells. Here we show that two well established, classic Hodgkin lymphoma (cHL) cell lines harbor deleterious variants within mitochondrial DNA (mtDNA) and thus exhibit reduced steady-state levels of respiratory chain complexes. However, instead of resulting in the expected bioenergetic defect, these mtDNA variants evoke a retrograde signaling response that induces mitochondrial biogenesis and ultimately results in increased mitochondrial mass as well as function and enhances proliferation in vitro as well as tumor growth in mice in vivo. When complex I assembly was impaired by knockdown of one of its subunits, this led to further increased mitochondrial mass and function and, consequently, further accelerated tumor growth in vivo. In contrast, inhibition of mitochondrial respiration in vivo by the mitochondrial complex I inhibitor metformin efficiently slowed down growth. We conclude that, as a new mechanism, mildly deleterious mtDNA variants in cHL cancer cells cause an increase of mitochondrial mass and enhanced function as a compensatory effect using a retrograde signaling pathway, which provides an obvious advantage for tumor growth.


Subject(s)
Carcinogenesis/pathology , DNA, Mitochondrial/genetics , Hodgkin Disease/pathology , Mutation , Organelle Biogenesis , Animals , Apoptosis , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Oxidative Phosphorylation , Reed-Sternberg Cells , Xenograft Model Antitumor Assays
15.
J Neuromuscul Dis ; 7(3): 355-360, 2020.
Article in English | MEDLINE | ID: mdl-32310184

ABSTRACT

We describe a patient with chronic progressive external ophthalmoplegia (CPEO) due to a rare mitochondrial genetic variant. Muscle biopsy revealed numerous cytochrome c oxidase (COX)-deficient fibres, prompting sequencing of the entire mitochondrial genome in muscle which revealed a rare m.12334G>A variant in the mitochondrial (mt-) tRNALeu(CUN)(MT-TL2) gene. Analysis of several tissues showed this to be a de novo mutational event. Single fibre studies confirmed the segregation of high m.12334G>A heteroplasmy levels with the COX histochemical defect, confirming pathogenicity of the m.12334G>A MT-TL2 variant. This case illustrates the importance of pursuing molecular genetic analysis in clinically-affected tissues when mitochondrial disease is suspected.


Subject(s)
Cytochrome-c Oxidase Deficiency/genetics , DNA, Mitochondrial/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , RNA, Transfer, Leu/genetics , Humans
16.
J Clin Med ; 9(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183169

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2'-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2'-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2'-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10-10,000 ng/mL for plasma, and 1-50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP.

17.
J Inherit Metab Dis ; 43(1): 36-50, 2020 01.
Article in English | MEDLINE | ID: mdl-31021000

ABSTRACT

Mitochondrial disease is hugely diverse with respect to associated clinical presentations and underlying genetic causes, with pathogenic variants in over 300 disease genes currently described. Approximately half of these have been discovered in the last decade due to the increasingly widespread application of next generation sequencing technologies, in particular unbiased, whole exome-and latterly, whole genome sequencing. These technologies allow more genetic data to be collected from patients with mitochondrial disorders, continually improving the diagnostic success rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of unknown significance have become a major challenge with next generation sequencing strategies and these require significant functional validation to confirm pathogenicity. This interface between diagnostics and research is critical in continuing to expand the list of known pathogenic variants and concomitantly enhance our knowledge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other "omics" techniques such as transcriptomics and proteomics will generate even more data and allow further interrogation and validation of genetic causes, including those outside of coding regions. This will improve diagnostic yields still further and emphasizes the integral role that functional assessment of variant causality plays in this process-the overarching focus of this review.


Subject(s)
Exome Sequencing/methods , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing/methods , Mitochondrial Diseases/diagnosis , Molecular Diagnostic Techniques , Humans , Mitochondrial Diseases/genetics , Sequence Analysis, RNA , Transcriptome
18.
Clin Genet ; 97(2): 276-286, 2020 02.
Article in English | MEDLINE | ID: mdl-31600844

ABSTRACT

Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.


Subject(s)
DNA, Mitochondrial/genetics , GMP Reductase/genetics , Late Onset Disorders/genetics , Muscle, Skeletal/enzymology , Ophthalmoplegia/genetics , Adenine/metabolism , Aged , Cells, Cultured , Cytochrome-c Oxidase Deficiency/metabolism , DNA Replication , DNA, Mitochondrial/metabolism , Female , Fibroblasts/enzymology , GMP Reductase/deficiency , GMP Reductase/metabolism , Guanine/metabolism , HEK293 Cells , HeLa Cells , Heterozygote , Humans , Late Onset Disorders/metabolism , Late Onset Disorders/pathology , Muscle, Skeletal/pathology , Ophthalmoplegia/enzymology , Ophthalmoplegia/physiopathology , Oxidative Phosphorylation , RNA Splicing , Sequence Deletion , Exome Sequencing
19.
Neuromuscul Disord ; 29(9): 693-697, 2019 09.
Article in English | MEDLINE | ID: mdl-31488384

ABSTRACT

We report a novel mitochondrial m.4414T>C variant in the mt-tRNAMet (MT-TM) gene in an adult patient with chronic progressive external ophthalmoplegia and myopathy whose muscle biopsy revealed focal cytochrome c oxidase (COX)-deficient and ragged red fibres. The m.4414T>C variant occurs at a strongly evolutionary conserved sequence position, disturbing a canonical base pair and disrupting the secondary and tertiary structure of the mt-tRNAMet. Definitive evidence of pathogenicity is provided by clear segregation of m.4414T>C mutant levels with COX deficiency in single muscle fibres. Interestingly, the variant is present in skeletal muscle at relatively low levels (30%) and undetectable in accessible, non-muscle tissues from the patient and her asymptomatic brother, emphasizing the continuing requirement for a diagnostic muscle biopsy as the preferred tissue for mtDNA genetic investigations of mt-tRNA variants leading to mitochondrial myopathy.


Subject(s)
DNA, Mitochondrial/genetics , Muscle, Skeletal/pathology , Ophthalmoplegia, Chronic Progressive External/genetics , RNA, Transfer, Met/genetics , Aged , Electron Transport Complex IV/metabolism , Female , Humans , Muscle, Skeletal/metabolism , Mutation , Severity of Illness Index
20.
J Clin Med ; 8(6)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167410

ABSTRACT

Both nuclear and mitochondrial DNA defects can cause isolated cytochrome c oxidase (COX; complex IV) deficiency, leading to the development of the mitochondrial disease. We report a 52-year-old female patient who presented with a late-onset, progressive cerebellar ataxia, tremor and axonal neuropathy. No family history of neurological disorder was reported. Although her muscle biopsy demonstrated a significant COX deficiency, there was no clinical and electromyographical evidence of myopathy. Electrophysiological studies identified low frequency sinusoidal postural tremor at 3 Hz, corroborating the clinical finding of cerebellar dysfunction. Complete sequencing of the mitochondrial DNA genome in muscle identified a novel MT-CO2 variant, m.8163A>G predicting p.(Tyr193Cys). We present several lines of evidence, in proving the pathogenicity of this heteroplasmic mitochondrial DNA variant, as the cause of her clinical presentation. Our findings serve as an important reminder that full mitochondrial DNA analysis should be included in the diagnostic pipeline for investigating individuals with spinocerebellar ataxia.

SELECTION OF CITATIONS
SEARCH DETAIL
...