Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Front Neurol ; 14: 1023950, 2023.
Article in English | MEDLINE | ID: mdl-37006485

ABSTRACT

Introduction: Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. According to the 2022 International League Against Epilepsy classification, FCD type II is characterized by dysmorphic neurons (IIa and IIb) and may be associated with balloon cells (IIb). We present a multicentric study to evaluate the transcriptomes of the gray and white matters of surgical FCD type II specimens. We aimed to contribute to pathophysiology and tissue characterization. Methods: We investigated FCD II (a and b) and control samples by performing RNA-sequencing followed by immunohistochemical validation employing digital analyses. Results: We found 342 and 399 transcripts differentially expressed in the gray matter of IIa and IIb lesions compared to controls, respectively. Cholesterol biosynthesis was among the main enriched cellular pathways in both IIa and IIb gray matter. Particularly, the genes HMGCS1, HMGCR, and SQLE were upregulated in both type II groups. We also found 12 differentially expressed genes when comparing transcriptomes of IIa and IIb lesions. Only 1 transcript (MTRNR2L12) was significantly upregulated in FCD IIa. The white matter in IIa and IIb lesions showed 2 and 24 transcripts differentially expressed, respectively, compared to controls. No enriched cellular pathways were detected. GPNMB, not previously described in FCD samples, was upregulated in IIb compared to IIa and control groups. Upregulations of cholesterol biosynthesis enzymes and GPNMB genes in FCD groups were immunohistochemically validated. Such enzymes were mainly detected in both dysmorphic and normal neurons, whereas GPNMB was observed only in balloon cells. Discussion: Overall, our study contributed to identifying cortical enrichment of cholesterol biosynthesis in FCD type II, which may correspond to a neuroprotective response to seizures. Moreover, specific analyses in either the gray or the white matter revealed upregulations of MTRNR2L12 and GPNMB, which might be potential neuropathological biomarkers of a cortex chronically exposed to seizures and of balloon cells, respectively.

2.
Seizure ; 90: 51-59, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33602567

ABSTRACT

Many people with epilepsy remain drug-resistant, despite continuous efforts and advances in research and treatment. It is mandatory to understand the epilepsy's underlying etiology, whether it is structural, genetic, infectious, metabolic, immune or (currently) unknown, as it contains major information about the clinical phenotype, cognitive comorbidities, (new) drug targets and also help to predict postsurgical outcome. A multimodal approach, including digital slides and multichannel immunofluorescence labelling can increase the diagnostic yield of subtle pathologies, while DNA methylation arrays could helps in the diagnosis of difficult-to-classify lesions. Such techniques are not always available, however, in low-income countries. Even without access to expensive molecular techniques, automated analysis scripts and machine learning algorithms can be developed by Latin American researchers to improve our diagnostic yield from routine Hematoxylin & Eosin stained tissue sections. The pathology community of Latin America contributed substantially to our current knowledge of etiologies related to human epilepsies and experimental epilepsy models. To further boost the impact of Latin American research, local centers should adhere to modern, multimodal neuropathology techniques, integrate different levels of knowledge, and strengthen their scientific collaborations. Dedicated teaching courses in Epileptology, such as the Latin American Summer Schools of Epilepsy (LASSE) or International Summer School for Neuropathology and Epilepsy Surgery (INES) addressing young researcher and neurologists, are most successful to promote this endeavor. In this review, we will describe the state of neuropathology at the 21st century and also highlight Latin American researchers' contributions to the current knowledge in neuropathology of epilepsy.


Subject(s)
Epilepsy , Humans , Latin America/epidemiology , Neurologists , Poverty , Schools
3.
Front Neurol ; 9: 927, 2018.
Article in English | MEDLINE | ID: mdl-30524352

ABSTRACT

In patients with temporal lobe epilepsy (TLE), presurgical magnetic resonance imaging (MRI) often reveals hippocampal atrophy, while neuropathological assessment indicates the different types of hippocampal sclerosis (HS). Different HS types are not discriminated in MRI so far. We aimed to define the volume of each hippocampal subfield on MRI manually and to compare automatic and manual segmentations for the discrimination of HS types. The T2-weighted images from 14 formalin-fixed age-matched control hippocampi were obtained with 4.7T MRI to evaluate the volume of each subfield at the anatomical level of the hippocampal head, body, and tail. Formalin-fixed coronal sections at the level of the body of 14 control cases, as well as tissue samples from 24 TLE patients, were imaged with a similar high-resolution sequence at 3T. Presurgical three-dimensional (3D) T1-weighted images from TLE went through a FreeSurfer 6.0 hippocampal subfield automatic assessment. The manual delineation with the 4.7T MRI was identified using Luxol Fast Blue stained 10-µm-thin microscopy slides, collected at every millimeter. An additional section at the level of the body from controls and TLE cases was submitted to NeuN immunohistochemistry for neuronal density estimation. All TLE cases were classified according to the International League Against Epilepsy's (ILAE's) HS classification. Manual volumetry in controls revealed that the dentate gyrus (DG)+CA4 region, CA1, and subiculum accounted for almost 90% of the hippocampal volume. The manual 3T volumetry showed that all TLE patients with type 1 HS (TLE-HS1) had lower volumes for DG+CA4, CA2, and CA1, whereas those TLE patients with HS type 2 (TLE-HS2) had lower volumes only in CA1 (p ≤ 0.038). Neuronal cell densities always decreased in CA4, CA3, CA2, and CA1 of TLE-HS1 but only in CA1 of TLE-HS2 (p ≤ 0.003). In addition, TLE-HS2 had a higher volume (p = 0.016) and higher neuronal density (p < 0.001) than the TLE-HS1 in DG + CA4. Automatic segmentation failed to match the manual or histological findings and was unable to differentiate TLE-HS1 from TLE-HS2. Total hippocampal volume correlated with DG+CA4 and CA1 volumes and neuronal density. For the first time, we also identified subfield-specific pathology patterns in the manual evaluation of volumetric MRI scans, showing the importance of manual segmentation to assess subfield-specific pathology patterns.

SELECTION OF CITATIONS
SEARCH DETAIL