Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Free Radic Biol Med ; 144: 167-175, 2019 11 20.
Article En | MEDLINE | ID: mdl-31141712

Circulating oxidized phospholipids are increasingly recognized as biomarkers of atherosclerosis. Clinical association studies have been mainly performed using an immune assay based on monoclonal antibody E06, which recognizes a variety of molecular species of oxidized phosphatidylcholine (OxPC) in lipoproteins, cell membranes or covalently bound to plasma proteins. Accumulating evidence shows that individual molecular species of OxPC demonstrate different biological activities and have different half-life times. Therefore, it is likely that certain molecular species can be associated with pathology more strongly than others. This hypothesis can only be tested using LC-MS/MS allowing quantification of individual molecular species of OxPCs. In order to ensure that laborious LC-MS/MS methods do not simply replicate the results of a technically simpler E06-OxPCs assay, we have performed relative quantification of 8 truncated molecular species of OxPCs in plasma of 132 probands and compared the data with the results of the E06-OxPCs and OxLDL assays. We have found a strong correlation between individual molecular species of OxPCs but only a weak correlation of LC-MS/MS-OxPCs data with the E06-OxPCs assay and no correlation with the OxLDL assay. Furthermore, in contrast to the results of E06-OxPCs or OxLDL assays, 7 out of 8 OxPC species were associated with hypertension. The data suggest that the results of the LC-MS/MS-OxPCs assay do not replicate the results of two ELISA-based lipid oxidation tests and therefore may produce additional diagnostic information. These findings necessitate development of simplified mass spectrometric procedures for high-throughput and affordable analysis of selected molecular species of OxPCs.


Coronary Artery Disease/blood , Dyslipidemias/blood , Hypertension/blood , Phosphatidylcholines/blood , Adult , Biomarkers/blood , Cholesterol/blood , Chromatography, Liquid , Cohort Studies , Coronary Artery Disease/diagnosis , Coronary Artery Disease/physiopathology , Creatinine/blood , Dyslipidemias/diagnosis , Dyslipidemias/physiopathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Male , Middle Aged , Oxidation-Reduction , Phosphatidylcholines/classification , Tandem Mass Spectrometry , Triglycerides/blood
2.
Redox Biol ; 20: 467-482, 2019 01.
Article En | MEDLINE | ID: mdl-30466060

Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Mass spectrometric analysis immediately or 24 h post UV stress revealed significant changes in abundance of 173 and 84 lipid species, respectively. We identified known and novel lipid species including known bioactive and also potentially reactive carbonyl containing species. We found indication for selective metabolism and degradation of selected reactive lipids. Exposure to both UVA and to in vitro UVA - oxidized phospholipids activated, on transcriptome and proteome level, NRF2/antioxidant response signaling, lipid metabolizing enzyme expression and unfolded protein response (UPR) signaling. We identified NUPR1 as an upstream regulator of UVA/OxPL transcriptional stress responses and found this protein to be expressed in the epidermis. Silencing of NUPR1 resulted in augmented expression of antioxidant and lipid detoxification genes and disturbed the cell cycle, making it a potential key factor in skin reactive oxygen species (ROS) responses intimately involved in aging and pathology.


Basic Helix-Loop-Helix Transcription Factors/genetics , Keratinocytes/metabolism , Keratinocytes/radiation effects , Neoplasm Proteins/genetics , Oxidation-Reduction/radiation effects , Phospholipids/metabolism , Stress, Physiological/genetics , Stress, Physiological/radiation effects , Ultraviolet Rays , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Lipid Metabolism , Metabolome , Metabolomics/methods , Models, Biological , Neoplasm Proteins/metabolism , Transcriptome
3.
FASEB J ; 33(3): 3887-3900, 2019 03.
Article En | MEDLINE | ID: mdl-30521374

As mechanisms controlling redox homeostasis become impaired with aging, exaggerated oxidant stress may cause disproportional oxidation of cell membranes and circulating phospholipids (PLs), leading to the formation of truncated oxidized PL products (Tr-OxPLs), which exhibit deleterious effects. This study investigated the role of elevated Tr-OxPLs as a factor exacerbating inflammation and lung barrier dysfunction in an animal model of aging. Mass spectrometry analysis of Tr-OxPL species in young (2-4 mo) and aging (18-24 mo) mice revealed elevated basal levels of several products [1-palmitoyl-2-(5-oxovaleroyl)- sn-glycero-phosphocholine (POVPC), 1-palmitoyl-2-glutaroyl- sn-glycero-phosphocholine, lysophosphocholine, 1-palmitoyl-2-(9-oxo-nonanoyl)- sn-glycero-3-phosphocholine, 1-palmitoyl-2-azelaoyl- sn-glycero-3-phosphocholine, O-1-O-palmitoyl-2-O-(5,8-dioxo-8-hydroxy-6-octenoyl)-l-glycero-3-phosphocholine, and others] in the aged lungs. An intratracheal (i.t.) injection of bacterial LPS caused increased generation of Tr-OxPLs in the lungs but not in the liver, with higher levels detected in the aged group. In addition, OxPLs clearance from the lung tissue after LPS challenge was delayed in the aged group. The impact of Tr-OxPLs on endothelial cell (EC) barrier compromise under inflammatory conditions was further evaluated in the 2-hit cell culture model of acute lung injury (ALI). EC barrier dysfunction caused by cell treatment with a cytokine mixture (CM) was augmented by cotreatment with low-dose Tr-OxPLs, which did not significantly affect endothelial function when added alone. Deleterious effects of Tr-OxPLs on inflamed ECs stimulated with CM were associated with further weakening of cell junctions and more robust EC hyperpermeability. Aged mice injected intratracheally with TNF-α exhibited a more pronounced elevation of cell counts and protein content in bronchoalveolar lavage (BAL) samples. Interestingly, intravenous administration of low POVPC doses-which did not affect BAL parameters alone in young mice exposed to i.t. TNF-α challenge-augmented lung injury to the levels observed in aged mice stimulated with TNF-α alone. Inhibition of Tr-OxPL generation by ectopic expression of PL-specific platelet-activating factor acetylhydrolase 2 (PAFAH2) markedly reduced EC dysfunction induced by CM, whereas PAFAH2 pharmacologic inhibition augmented deleterious effects of cytokines on EC barrier function. Moreover, exacerbating effects of PAFAH2 inhibition on TNF-α-induced lung injury were observed in vivo. These results demonstrate an age-dependent increase in Tr-OxPL production under basal conditions and augmented Tr-OxPL generation upon inflammatory stimulation, suggesting a major role for elevated Tr-OxPLs in more severe ALI and delayed resolution in aging lungs.-Ke, Y., Karki, P., Kim, J., Son, S., Berdyshev, E., Bochkov, V. N., Birukova, A. A., Birukov, K. G. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs.


Acute Lung Injury/metabolism , Aging/metabolism , Alveolar Epithelial Cells/metabolism , Lung/metabolism , Phospholipids/metabolism , Acute Lung Injury/pathology , Aging/pathology , Alveolar Epithelial Cells/pathology , Animals , Cells, Cultured , Female , Humans , Lung/cytology , Lung/growth & development , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
4.
Antioxidants (Basel) ; 7(9)2018 Aug 30.
Article En | MEDLINE | ID: mdl-30200198

Covalent modification of functionally important cell proteins by lipid oxidation products (LOPs) is a known mechanism initiating pathological consequences of oxidative stress. Identification of new proteins covalently modified by electrophilic lipids can be performed by a combination of chemical, immunological, and mass spectrometry-based methods, but requires prior knowledge either on the exact molecular structure of LOPs (e.g., 4-hydroxynonenal) or candidate protein targets. However, under the conditions of oxidative stress in vivo, a complex mixture of proteins (e.g., cytosolic proteome) reacts with a complex mixture of LOPs. Here we describe a method for detection of lipid-modified proteins that does not require an a priori knowledge on the chemical structure of LOPs or identity of target proteins. The method is based on the change of electrophoretic mobility of lipid-modified proteins, which is induced by conformational changes and cross-linking with other proteins. Abnormally migrating proteins are detected by mass spectrometry-based protein peptide sequencing. We applied this method to study effects of oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) on endothelial cells. Several known, but also many new, OxPAPC-binding proteins were identified. We expect that this technically relatively simple method can be widely applied for label-free analysis of lipid-protein interactions in complex protein samples treated with different LOPs.

5.
Angiogenesis ; 21(2): 229-236, 2018 05.
Article En | MEDLINE | ID: mdl-29330760

Receptor tyrosine kinase c-Kit and its ligand stem cell factor (SCF) regulate resident vascular wall cells and recruit circulating progenitors. We tested whether SCF may be induced by oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) known to accumulate in atherosclerotic vessels. Gene expression analysis demonstrated OxPAPC-induced upregulation of SCF mRNA and protein in different types of endothelial cells (ECs). Elevated levels of SCF mRNA were observed in aortas of ApoE-/- knockout mice. ECs produced biologically active SCF because conditioned medium from OxPAPC-treated cells stimulated activation (phosphorylation) of c-Kit in naïve ECs. Induction of SCF by OxPAPC was inhibited by knocking down transcription factor NRF2. Inhibition or stimulation of NRF2 by pharmacological or molecular tools induced corresponding changes in SCF expression. Finally, we observed decreased levels of SCF mRNA in aortas of NRF2 knockout mice. We characterize OxPLs as a novel pathology-associated stimulus inducing expression of SCF in endothelial cells. Furthermore, our data point to transcription factor NRF2 as a major mediator of OxPL-induced upregulation of SCF. This mechanism may represent one of the facets of pleiotropic action of NRF2 in vascular wall.


Aorta/metabolism , Gene Expression Regulation , NF-E2-Related Factor 2/metabolism , Phosphatidylcholines/metabolism , Stem Cell Factor/biosynthesis , Animals , Aorta/pathology , Apolipoproteins E/deficiency , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Male , Mice , Mice, Knockout, ApoE , NF-E2-Related Factor 2/genetics , Oxidation-Reduction , Phosphatidylcholines/genetics , Stem Cell Factor/genetics
6.
Sci Rep ; 8(1): 879, 2018 01 17.
Article En | MEDLINE | ID: mdl-29343759

Correction of barrier dysfunction and inflammation in acute lung injury (ALI) represents an important problem. Previous studies demonstrate barrier-protective and anti-inflammatory effects of bioactive lipid prostacyclin and its stable analog iloprost (ILO). We generated a phospholipase resistant synthetic phospholipid with iloprost attached at the sn-2 position (ILO-PC) and investigated its biological effects. In comparison to free ILO, ILO-PC caused sustained endothelial cell (EC) barrier enhancement, linked to more prolonged activation of Rap1 and Rac1 GTPases and their cytoskeletal and cell junction effectors: cortactin, PAK1, p120-catenin and VE-cadherin. ILO and ILO-PC equally efficiently suppressed acute, Rho GTPase-dependent EC hyper-permeability caused by thrombin. However, ILO-PC exhibited more sustained barrier-protective and anti-inflammatory effects in the model of chronic EC dysfunction caused by bacterial wall lipopolysacharide (LPS). ILO-PC was also more potent inhibitor of NFκB signaling and lung vascular leak in the murine model of LPS-induced ALI. Treatment with ILO-PC showed more efficient ALI recovery over 3 days after LPS challenge than free ILO. In conclusion, this study describes a novel synthetic phospholipid with barrier-enhancing and anti-inflammatory properties superior to existing prostacyclin analogs, which may be used as a prototype for future development of more efficient treatment for ALI and other vascular leak syndromes.


Endothelial Cells/drug effects , Iloprost/pharmacology , Lung/drug effects , Phospholipases/metabolism , Phospholipids/metabolism , Protective Agents/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Adherens Junctions/drug effects , Adherens Junctions/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability/drug effects , Cell Line , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Epoprostenol/metabolism , Humans , Lipopolysaccharides/pharmacology , Lung/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction/drug effects , Thrombin/metabolism , rap1 GTP-Binding Proteins/metabolism
7.
FASEB J ; 31(9): 4187-4202, 2017 09.
Article En | MEDLINE | ID: mdl-28572443

Unlike other agonists that cause transient endothelial cell (EC) response, the products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) oxidation that contain cyclopenthenone groups, which recapitulate prostaglandin-like structure, cause sustained enhancement of the pulmonary EC barrier. The mechanisms that drive the sustained effects by oxidized PAPC (OxPAPC) remain unexplored. On the basis of the structural similarity of isoprostanoid moieties that are present in full-length oxygenated PAPC species, we used an inhibitory approach to perform the screening of prostanoid receptors as potential candidates that mediate OxPAPC effects. Results show that only prostaglandin E receptor-4 (EP4) was involved and mediated the sustained phase of the barrier-enhancing effects of OxPAPC that are associated with the activation of Rac GTPase and its cytoskeletal targets. EC incubation with OxPAPC also induced EP4 mRNA expression in pulmonary ECs and lung tissue. EP4 knockdown using gene-specific small interfering RNA did not affect the rapid phase of OxPAPC-induced EC barrier enhancement or the protective effects against thrombin-induced EC permeability, but abolished the advanced barrier enhancement phase and suppressed the protective effects of OxPAPC against more sustained EC barrier dysfunction and cell inflammatory response caused by TNF-α. Endothelial-specific knockout of the EP4 receptor in mice attenuated the protective effect of intravenous OxPAPC administration in the model of acute lung injury caused by intratracheal injection of LPS. Taken together, these results demonstrate a novel role for prostaglandin receptor EP4 in the mediation of barrier-enhancing and anti-inflammatory effects caused by oxidized phospholipids.-Oskolkova, O., Gawlak, G., Tian, Y., Ke, Y., Sarich, N., Son, S., Andreasson, K., Bochkov, V. N., Birukova, A. A., Birukov, K. G. Prostaglandin E receptor-4 receptor mediates endothelial barrier-enhancing and anti-inflammatory effects of oxidized phospholipids.


Endothelial Cells/physiology , Phosphatidylcholines/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Adherens Junctions/physiology , Animals , Cytoskeleton , Electric Impedance , Humans , Inflammation/metabolism , Lung Injury , Mice , Mice, Knockout , Oxidation-Reduction , Phosphatidylcholines/chemistry , Phospholipids , Receptors, Prostaglandin E, EP4 Subtype/genetics , Thrombin , Tumor Necrosis Factor-alpha , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
8.
Circ Res ; 121(3): 244-257, 2017 Jul 21.
Article En | MEDLINE | ID: mdl-28522438

RATIONALE: Oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) generates a group of bioactive oxidized phospholipid products with a broad range of biological activities. Barrier-enhancing and anti-inflammatory effects of OxPAPC on pulmonary endothelial cells are critical for prevention of acute lung injury caused by bacterial pathogens or excessive mechanical ventilation. Anti-inflammatory properties of OxPAPC are associated with its antagonistic effects on Toll-like receptors and suppression of RhoA GTPase signaling. OBJECTIVE: Because OxPAPC exhibits long-lasting anti-inflammatory and lung-protective effects even after single administration in vivo, we tested the hypothesis that these effects may be mediated by additional mechanisms, such as OxPAPC-dependent production of anti-inflammatory and proresolving lipid mediator, lipoxin A4 (LXA4). METHODS AND RESULTS: Mass spectrometry and ELISA assays detected significant accumulation of LXA4 in the lungs of OxPAPC-treated mice and in conditioned medium of OxPAPC-exposed pulmonary endothelial cells. Administration of LXA4 reproduced anti-inflammatory effect of OxPAPC against tumor necrosis factor-α in vitro and in the animal model of lipopolysaccharide-induced lung injury. The potent barrier-protective and anti-inflammatory effects of OxPAPC against tumor necrosis factor-α and lipopolysaccharide challenge were suppressed in human pulmonary endothelial cells with small interfering RNA-induced knockdown of LXA4 formyl peptide receptor-2 (FPR2/ALX) and in mFPR2-/- (mouse formyl peptide receptor 2) mice lacking the mouse homolog of human FPR2/ALX. CONCLUSIONS: This is the first demonstration that inflammation- and injury-associated phospholipid oxidation triggers production of anti-inflammatory and proresolution molecules, such as LXA4. This lipid mediator switch represents a novel mechanism of OxPAPC-assisted recovery of inflamed lung endothelium.


Acute Lung Injury/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Lipoxins/metabolism , Phosphatidylcholines/therapeutic use , Acute Lung Injury/prevention & control , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cells, Cultured , Humans , Lipoxins/pharmacology , Lipoxins/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylcholines/pharmacology , Treatment Outcome
9.
Inflammation ; 40(2): 530-536, 2017 Apr.
Article En | MEDLINE | ID: mdl-28101847

We have found that a well-characterized P2X7 receptor antagonist AZ11645373 blocked production of pro-inflammatory chemokine IL-8 in endothelial cells treated with OxPAPC. The effect was not due to toxicity of AZ11645373 as documented by cellular metabolic activity assay. The mechanism of inhibition by AZ11645373 was apparently independent of the P2X7 receptor because this receptor was not involved in induction of IL-8 under our experimental conditions. In support of this notion, two P2X7 agonists ATP and BzATP did not upregulate IL-8. On the other hand, a chemically different P2X7 receptor antagonist A740003 did not inhibit OxPAPC-induced production of IL-8. The inhibitory action of AZ11645373 was observed at the level of IL-8 protein and messenger RNA (mRNA) induction. Furthermore, AZ11645373 inhibited induction of mRNA encoding for COX-2 (PTGS2) suggesting that its anti-inflammatory potential is not limited to suppression of IL-8 production. In addition to inhibiting stimulation by OxPAPC, AZ11645373 suppressed induction of IL-8 by TNFα and LPS. To summarize, AZ11645373 inhibits in a P2X7-independent manner action of chemically different inflammatory agonists such as OxPLs, LPS, and TNFα. Thus, AZ11645373 may be especially effective for treatment of inflammatory disorders due to a beneficial combination of P2X7 receptor-dependent effects (inhibition of inflammasome activation, antinociceptive effects) with P2X7-independent general anti-inflammatory action described in this paper.


Anti-Inflammatory Agents/pharmacology , Interleukin-8/genetics , Purinergic P2X Receptor Antagonists/pharmacology , Thiazoles/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Inflammasomes/metabolism , Interleukin-8/antagonists & inhibitors , Interleukin-8/drug effects , Phosphatidylcholines/pharmacology , RNA, Messenger , Receptors, Purinergic P2X7 , Transcriptional Activation/drug effects
10.
Mol Aspects Med ; 49: 78-90, 2016 06.
Article En | MEDLINE | ID: mdl-26948981

Oxidized phospholipids are generally recognized as deleterious factors involved in disease pathogenesis. This review summarizes the data suggesting that under certain biological conditions the opposite is correct, namely that OxPLs can also induce protective effects. Examples that are discussed in the review include upregulation of antioxidant genes, inhibition of inflammatory signaling pathways through Nrf2-dependent and -independent mechanisms, antagonism of Toll-like receptors, immuno-modulating and immuno-suppressive action of OxPLs in adaptive immunity and autoimmune disease, activation of PPARs known for their anti-inflammatory action, as well as protective action against lung edema in acute lung inflammation. The data support the notion that oxidation of phospholipids provides a negative feedback preventing damage to host tissues due to uncontrolled inflammation and oxidative stress.


Anti-Inflammatory Agents/metabolism , Hormesis , Oxidation-Reduction , Phospholipids/metabolism , Adaptive Immunity/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Humans , Immunomodulation/drug effects , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Metabolic Networks and Pathways , Molecular Structure , Oxidative Stress , Peroxisome Proliferator-Activated Receptors/metabolism , Phospholipids/chemistry , Phospholipids/pharmacology , Respiratory Burst/drug effects , Respiratory Burst/immunology , Signal Transduction , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
11.
Phytomedicine ; 22(9): 862-74, 2015 Aug 15.
Article En | MEDLINE | ID: mdl-26220634

BACKGROUND: The t(2;5)(p23;q35) chromosomal translocation results in the expression of the fusion protein NPM/ALK that when expressed in T-lymphocytes gives rise to anaplastic large cell lymphomas (ALCL). In search of new therapy options the dichloromethane extract of the ethnomedicinal plant Neurolaena lobata (L.) R.Br. ex Cass was shown to inhibit NPM/ALK expression. PURPOSE: Therefore, we analysed whether the active principles that were recently isolated and found to inhibit inflammatory responses specifically inhibit growth of NPM/ALK+ ALCL, leukaemia and breast cancer cells, but not of normal cells, and the intravasation through the lymphendothelial barrier. METHODS: ALCL, leukaemia and breast cancer cells, and normal peripheral blood mononuclear cells (PBMCs) were treated with isolated sesquiterpene lactones and analysed for cell cycle progression, proliferation, mitochondrial activity, apoptosis, protein and mRNA expression, NF-κB and cytochrome P450 activity, 12(S)-HETE production and lymphendothelial intravasation. RESULTS: In vitro treatment of ALCL by neurolenin B suppressed NPM/ALK, JunB and PDGF-Rß expression, inhibited the growth of ALCL cells late in M phase, and induced apoptosis via caspase 3 without compromising mitochondrial activity (as a measure of general exogenic toxicity). Moreover, neurolenin B attenuated tumour spheroid intravasation probably through inhibition of NF-κB and CYP1A1. CONCLUSION: Neurolenin B specifically decreased pro-carcinogenic NPM/ALK expression in ALK+ ALCL cells and, via the inhibition of NF-kB signalling, attenuated tumour intra/extravasation into the lymphatics. Hence, neurolenin B may open new options to treat ALCL and to manage early metastatic processes to which no other therapies exist.


Asteraceae/chemistry , Lactones/pharmacology , Lymphoma, Large-Cell, Anaplastic/pathology , NF-kappa B/metabolism , Protein-Tyrosine Kinases/metabolism , Sesquiterpenes, Germacrane/pharmacology , Sesquiterpenes/pharmacology , Apoptosis , Cell Cycle , Cell Line, Tumor/drug effects , Cell Proliferation , Humans , Leukocytes, Mononuclear/drug effects , Molecular Structure , Plants, Medicinal/chemistry , Signal Transduction
12.
J Clin Invest ; 125(5): 1944-54, 2015 May.
Article En | MEDLINE | ID: mdl-25844901

DCs are able to undergo rapid maturation, which subsequently allows them to initiate and orchestrate T cell-driven immune responses. DC maturation must be tightly controlled in order to avoid random T cell activation and development of autoimmunity. Here, we determined that 12/15-lipoxygenase-meditated (12/15-LO-mediated) enzymatic lipid oxidation regulates DC activation and fine-tunes consecutive T cell responses. Specifically, 12/15-LO activity determined the DC activation threshold via generation of phospholipid oxidation products that induced an antioxidative response dependent on the transcription factor NRF2. Deletion of the 12/15-LO-encoding gene or pharmacologic inhibition of 12/15-LO in murine or human DCs accelerated maturation and shifted the cytokine profile, thereby favoring the differentiation of Th17 cells. Exposure of 12/15-LO-deficient DCs to 12/15-LO-derived oxidized phospholipids attenuated both DC activation and the development of Th17 cells. Analysis of lymphatic tissues from 12/15-LO-deficient mice confirmed enhanced maturation of DCs as well as an increased differentiation of Th17 cells. Moreover, experimental autoimmune encephalomyelitis in mice lacking 12/15-LO resulted in an exacerbated Th17-driven autoimmune disease. Together, our data reveal that 12/15-LO controls maturation of DCs and implicate enzymatic lipid oxidation in shaping the adaptive immune response.


Arachidonate 12-Lipoxygenase/physiology , Arachidonate 15-Lipoxygenase/physiology , Dendritic Cells/cytology , Adaptive Immunity , Animals , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/deficiency , Arachidonate 15-Lipoxygenase/genetics , Cell Differentiation , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Fatty Acids/metabolism , Female , Humans , Lymphoid Tissue/enzymology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Phospholipids/metabolism , Th17 Cells/immunology
13.
Cancer Lett ; 356(2 Pt B): 994-1006, 2015 Jan 28.
Article En | MEDLINE | ID: mdl-25444930

An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rß, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this early step of metastatic progression.


Antineoplastic Agents, Phytogenic/pharmacology , Asteraceae/chemistry , Endothelium, Lymphatic/drug effects , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/pathology , NF-kappa B/antagonists & inhibitors , Plant Extracts/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Sesquiterpenes/pharmacology , Apoptosis/drug effects , Blotting, Western , Caspases/genetics , Caspases/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endothelium, Lymphatic/pathology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lymphoma, Large-Cell, Anaplastic/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Invasiveness , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
14.
Mol Biol Cell ; 25(13): 2006-16, 2014 Jul 01.
Article En | MEDLINE | ID: mdl-24829380

Vascular integrity and the maintenance of blood vessel continuity are fundamental features of the circulatory system maintained through endothelial cell-cell junctions. Defects in the endothelial barrier become an initiating factor in several pathologies, including ischemia/reperfusion, tumor angiogenesis, pulmonary edema, sepsis, and acute lung injury. Better understanding of mechanisms stimulating endothelial barrier enhancement may provide novel therapeutic strategies. We previously reported that oxidized phospholipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [OxPAPC]) promote endothelial cell (EC) barrier enhancement both in vitro and in vivo. This study examines the initiating mechanistic events triggered by OxPAPC to increase vascular integrity. Our data demonstrate that OxPAPC directly binds the cell membrane-localized chaperone protein, GRP78, associated with its cofactor, HTJ-1. OxPAPC binding to plasma membrane-localized GRP78 leads to GRP78 trafficking to caveolin-enriched microdomains (CEMs) on the cell surface and consequent activation of sphingosine 1-phosphate receptor 1, Src and Fyn tyrosine kinases, and Rac1 GTPase, processes essential for cytoskeletal reorganization and EC barrier enhancement. Using animal models of acute lung injury with vascular hyperpermeability, we observed that HTJ-1 knockdown blocked OxPAPC protection from interleukin-6 and ventilator-induced lung injury. Our data indicate for the first time an essential role of GRP78 and HTJ-1 in OxPAPC-mediated CEM dynamics and enhancement of vascular integrity.


Endothelial Cells/metabolism , Heat-Shock Proteins/physiology , Phosphatidylcholines/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Caveolins/metabolism , Cells, Cultured , Electric Impedance , Endoplasmic Reticulum Chaperone BiP , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , HSP40 Heat-Shock Proteins/metabolism , Humans , Male , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Oxidation-Reduction , Protein Transport , Pulmonary Artery/cytology , Receptors, Lysosphingolipid/metabolism
15.
Exp Eye Res ; 116: 177-84, 2013 Nov.
Article En | MEDLINE | ID: mdl-24021586

Oxidized phospholipids (OxPLs) are pleiotropic lipid mediators known to induce proangiogenic and proinflammatory cellular effects that are increasingly recognized to be involved in a number of physiologic and pathologic processes in the retina. Immunohistochemical studies have detected OxPLs in retinal structures, such as retinal pigment epithelium (RPE) or photoreceptor cells. This study analyzed whether OxPLs could play a role in upregulation of VEGF, which is a cause of pathological neovascularization characteristic of eye diseases such as age-related macular degeneration. We confirmed accumulation of OxPLs in the eye using reversed-phase liquid chromatography coupled to mass spectrometry. Multiple species of oxidized phosphatidylcholines (OxPCs) were detected in human vitreous, including biologically active fragmented species POVPC, PGPC, PONPC and PAzPC. In in vitro experiments human fetal RPE and primary RPE cells were stimulated with OxPLs. Primary RPE cells were transfected with small interfering RNAs targeting ATF4. mRNA levels of VEGF in fetal and primary RPE cells were determined by real-time quantitative PCR. VEGF protein concentrations were measured in culture medium by ELISA. We found that OxPCs and other classes of OxPLs upregulated the expression of VEGF in fetal and primary RPE cells, which critically depended on ATF4. In addition, upregulation of VEGF in primary RPE cells was blocked by a chemical inhibitor of protein kinase CK2 known to suppress induction of ATF4 and VEGF by OxPLs. Our data show that different species of OxPLs, which are present in the human eye are capable of stimulating expression of VEGF in fetal and primary RPE cells via ATF4-dependent mechanisms.


Activating Transcription Factor 4/genetics , Casein Kinase II/genetics , Phospholipids/metabolism , RNA, Messenger/genetics , Retinal Pigment Epithelium/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/genetics , Activating Transcription Factor 4/biosynthesis , Blotting, Western , Casein Kinase II/biosynthesis , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mass Spectrometry , Oxidation-Reduction , Real-Time Polymerase Chain Reaction , Retinal Pigment Epithelium/pathology , Vascular Endothelial Growth Factor A/biosynthesis
16.
J Clin Invest ; 123(7): 3014-24, 2013 Jul.
Article En | MEDLINE | ID: mdl-23934128

Clearance of invading pathogens is essential to preventing overwhelming inflammation and sepsis that are symptomatic of bacterial peritonitis. Macrophages participate in this innate immune response by engulfing and digesting pathogens, a process called phagocytosis. Oxidized phospholipids (OxPL) are danger-associated molecular patterns (DAMPs) generated in response to infection that can prevent the phagocytic clearance of bacteria. We investigated the mechanism underlying OxPL action in macrophages. Exposure to OxPL induced alterations in actin polymerization, resulting in spreading of peritoneal macrophages and diminished uptake of E. coli. Pharmacological and cell-based studies showed that an anchored pool of PKA mediates the effects of OxPL. Gene silencing approaches identified the A-kinase anchoring protein (AKAP) WAVE1 as an effector of OxPL action in vitro. Chimeric Wave1(-/-) mice survived significantly longer after infection with E. coli and OxPL treatment in vivo. Moreover, we found that endogenously generated OxPL in human peritoneal dialysis fluid from end-stage renal failure patients inhibited phagocytosis via WAVE1. Collectively, these data uncover an unanticipated role for WAVE1 as a critical modulator of the innate immune response to severe bacterial infections.


Escherichia coli Infections/immunology , Macrophages, Peritoneal/immunology , Peritonitis/immunology , Phagocytosis , Phospholipids/physiology , Wiskott-Aldrich Syndrome Protein Family/metabolism , Animals , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Dimyristoylphosphatidylcholine/pharmacology , Enzyme Activation , Escherichia coli/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Humans , Immunity, Innate , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/therapy , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Peritoneal Dialysis , Peritonitis/metabolism , Peritonitis/microbiology , Phosphatidylcholines/pharmacology , Phosphatidylcholines/physiology , Wiskott-Aldrich Syndrome Protein Family/genetics
17.
Chem Phys Lipids ; 175-176: 9-19, 2013.
Article En | MEDLINE | ID: mdl-23911706

The lipid membrane not only provides a rich interface with an array of receptor signaling complexes with which a cell communicates, but it also serves as a source of lipid derived bioactive molecules. In pathologic conditions of acute lung injury (ALI) associated with activation of oxidative stress, unsaturated phosphatidyl cholines overlooking a luminal space undergo oxidation leading to generation of fragmented phospholipids such as 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC), or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) full length oxygenation products (oxPAPC). Using Langmuir monolayers as models of the lipid bilayer, we evaluated the propensity of these phospholipids to solubilize from the cell membrane. The results suggest that lysoPC is rapidly released as it is produced, while oxPAPC has a longer membrane bound lifetime. After being released from cell membranes, these oxidized phospholipids exhibit potent agonist-like effects on neighboring cells. Therefore, we correlate the presence of the two phospholipid groups with the onset and resolution of increased vascular leakiness associated with ALI through testing their effect on vascular endothelial barrier integrity. Our work shows that cells respond differently to these two groups of products of phosphatidyl choline oxidation. LysoPC disrupts cell-cell junctions and increases endothelial permeability while oxPAPC enhances endothelial barrier. These data suggest a model whereby rapid release of lysoPC results in onset of ALI associated vascular leak, and the release of a reserve of oxPAPC as oxidative stress subsides restores the vascular barrier properties.


Acute Lung Injury/metabolism , Endothelium, Vascular/pathology , Lysophosphatidylcholines/metabolism , Phosphatidylcholines/metabolism , Pulmonary Artery/pathology , Acute Lung Injury/pathology , Cell Line , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Humans , Kinetics , Oxidation-Reduction , Permeability , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Thermodynamics
18.
Cancer Res ; 73(11): 3460-9, 2013 Jun 01.
Article En | MEDLINE | ID: mdl-23576553

The antioxidant enzyme peroxiredoxin 6 (Prdx6) is a key regulator of the cellular redox balance, particularly under stress conditions. We identified Prdx6 as an important player in different phases of skin carcinogenesis. Loss of Prdx6 in mice enhanced the susceptibility to skin tumorigenesis, whereas overexpression of Prdx6 in keratinocytes of transgenic mice had the opposite effect. The tumor-preventive effect of Prdx6, which was observed in a human papilloma virus 8-induced and a chemically induced tumor model, was not due to alterations in keratinocyte proliferation, apoptosis, or in the inflammatory response. Rather, endogenous and overexpressed Prdx6 reduced oxidative stress as reflected by the lower levels of oxidized phospholipids in the protumorigenic skin of Prdx6 transgenic mice and the higher levels in Prdx6-knockout mice than in control animals. In contrast to its beneficial effect in tumor prevention, overexpression of Prdx6 led to an acceleration of malignant progression of existing tumors, revealing a dual function of this enzyme in the pathogenesis of skin cancer. Finally, we found strong expression of PRDX6 in keratinocytes of normal human skin and in the tumor cells of squamous cell carcinomas, indicating a role of Prdx6 in human skin carcinogenesis. Taken together, our data point to the potential usefulness of Prdx6 activators or inhibitors for controlling different stages of skin carcinogenesis.


Antioxidants/metabolism , Peroxiredoxin VI/metabolism , Skin Neoplasms/enzymology , 9,10-Dimethyl-1,2-benzanthracene , Adult , Animals , Carcinogenesis/metabolism , Female , Genes, Tumor Suppressor , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Peroxiredoxin VI/deficiency , Reactive Oxygen Species/metabolism , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology
19.
J Invest Dermatol ; 133(6): 1629-37, 2013 Jun.
Article En | MEDLINE | ID: mdl-23340736

The skin is exposed to environmental insults such as UV light that cause oxidative damage to macromolecules. A centerpiece in the defense against oxidative stress is the Nrf2 (nuclear factor (erythroid-derived-2)-like 2)-mediated transcriptional upregulation of antioxidant and detoxifying enzymes and the removal of oxidatively damaged material. Autophagy has an important role in the intracellular degradation of damaged proteins and entire organelles, but its role in the epidermis has remained elusive. Here, we show that both UVA and UVA-oxidized phospholipids induced autophagy in epidermal keratinocytes. Oxidative stressors induced massive accumulation of high-molecular-weight protein aggregates containing the autophagy adaptor protein p62/SQSTM1 in autophagy-deficient (autophagy-related 7 (ATG7) negative) keratinocytes. Strikingly, even in the absence of exogenous stress, the expression of Nrf2-dependent genes was elevated in autophagy-deficient keratinocytes. Furthermore, we show that autophagy-deficient cells contained significantly elevated levels of reactive oxidized phospholipids. Thus, our data demonstrate that autophagy is crucial for both the degradation of proteins and lipids modified by environmental UV stress and for limiting Nrf2 activity in keratinocytes. Lipids that promote inflammation and tissue damage because of their reactivity and signaling functions are commonly observed in aged and diseased skin, and thus targeting autophagy may be a promising strategy to counteract the damage promoted by excessive lipid oxidation.


Autophagy/radiation effects , Keratinocytes/pathology , Keratinocytes/radiation effects , Oxidative Stress/radiation effects , Phospholipids/metabolism , Ultraviolet Rays/adverse effects , Animals , Autophagy/physiology , Autophagy-Related Protein 7 , Cells, Cultured , Epidermis/pathology , Epidermis/radiation effects , Mice , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Phospholipids/genetics , Up-Regulation/physiology , Up-Regulation/radiation effects
20.
Atherosclerosis ; 225(1): 50-5, 2012 Nov.
Article En | MEDLINE | ID: mdl-22776647

OBJECTIVE: Atherosclerotic lesions contain high concentrations of oxidized phospholipids (OxPLs) known to induce VEGF via the ATF4 arm of unfolded protein response (UPR), and to promote angiogenic reactions thus potentially contributing to the progression and destabilization of atherosclerotic plaques. In order to get further insights into the mechanisms of cellular stress-induced angiogenesis we studied the role of a specific microRNA (miR-663) in the mechanisms of VEGF induction by OxPLs and inducers of UPR. METHODS: miRNA and mRNA levels were determined using microarray profiling and qRT-PCR methods. Proteins were analyzed by Western blotting. miR-663 levels were changed by transfecting cells with synthetic oligonucleotides. RESULTS: OxPAPC elevated miR-663 in two types of human endothelial cells (ECs). Knockdown of miR-663 inhibited upregulation of VEGF mRNA in ECs treated by OxPAPC, OxPAPS or OxPAPA. In addition, silencing of miR-663 suppressed upregulation by OxPAPC of ATF4 mRNA and protein, as well as a downstream gene TRIB. Similarly to the inhibition of OxPAPC effects, knockdown of miR-663 suppressed elevation of ATF4, VEGF and TRIB in response to another inducer of UPR, tunicamycin. Overexpression of miR-663 reversed the inhibition of VEGF induction by miR-663 inhibitor. CONCLUSION: miR-663 is critically important for 2 key events induced in ECs by stress agents and oxidized lipids, namely induction of transcription factor ATF4 and its downstream gene VEGF. These findings allow hypothesizing that miR-663 plays a general role in control of the ATF4 branch of UPR induced by different agents.


Activating Transcription Factor 4/metabolism , MicroRNAs/physiology , Unfolded Protein Response/drug effects , Vascular Endothelial Growth Factor A/biosynthesis , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , MicroRNAs/antagonists & inhibitors , Oxidation-Reduction , Phosphatidylcholines , Phospholipids/metabolism , Tunicamycin/pharmacology
...