Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
EFSA J ; 22(7): e8844, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957748

ABSTRACT

The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.

2.
EFSA J ; 22(3): e8640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476320

ABSTRACT

EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.

3.
EFSA J ; 22(1): e8528, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38205503

ABSTRACT

This statement provides scientific guidance on the information needed to support the risk assessment of the detoxification processes applied to products intended for animal feed in line with the acceptability criteria of the Commission Regulation (EU) 2015/786.

4.
EFSA J ; 22(1): e8488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239496

ABSTRACT

The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 µg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.

5.
EFSA J ; 22(1): e8497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269035

ABSTRACT

The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ­209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.

6.
EFSA J ; 22(1): e8496, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264299

ABSTRACT

The European Commission requested EFSA to provide an update of the 2012 Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risks for animal health related to the presence of ergot alkaloids (EAs) in feed. EAs are produced by several fungi of the Claviceps and Epichloë genera. This Opinion focussed on the 14 EAs produced by C. purpurea (ergocristine, ergotamine, ergocornine, α- and ß-ergocryptine, ergometrine, ergosine and their corresponding 'inine' epimers). Effects observed with EAs from C. africana (mainly dihydroergosine) and Epichloë (ergovaline/-inine) were also evaluated. There is limited information on toxicokinetics in food and non-food producing animals. However, transfer from feed to food of animal origin is negligible. The major effects of EAs are related to vasoconstriction and are exaggerated during extreme temperatures. In addition, EAs cause a decrease in prolactin, resulting in a reduced milk production. Based on the sum of the EAs, the Panel considered the following as Reference Points (RPs) in complete feed for adverse animal health effects: for pigs and piglets 0.6 mg/kg, for chickens for fattening and hens 2.1 and 3.7 mg/kg, respectively, for ducks 0.2 mg/kg, bovines 0.1 mg/kg and sheep 0.3 mg/kg. A total of 19,023 analytical results on EAs (only from C. purpurea) in feed materials and compound feeds were available for the exposure assessment (1580 samples). Dietary exposure was assessed using two feeding scenarios (model diets and compound feeds). Risk characterisation was done for the animals for which an RP could be identified. The CONTAM Panel considers that, based on exposure from model diets, the presence of EAs in feed raises a health concern in piglets, pigs for fattening, sows and bovines, while for chickens for fattening, laying hens, ducks, ovines and caprines, the health concern related to EAs in feed is low.

7.
EFSA J ; 21(11): e08375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37942224

ABSTRACT

In 2004, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks to animal health and transfer from feed to food of animal origin related to the presence of ochratoxin A (OTA) in feed. The European Commission requested EFSA to assess newly available scientific information and to update the 2004 Scientific Opinion. OTA is produced by several fungi of the genera Aspergillus and Penicillium. In most animal species it is rapidly and extensively absorbed in the gastro-intestinal tract, binds strongly to plasma albumins and is mainly detoxified to ochratoxin alpha (OTalpha) by ruminal microbiota. In pigs, OTA has been found mainly in liver and kidney. Transfer of OTA from feed to milk in ruminants and donkeys as well as to eggs from poultry is confirmed but low. Overall, OTA impairs function and structure of kidneys and liver, causes immunosuppression and affects the zootechnical performance (e.g. body weight gain, feed/gain ratio, etc.), with monogastric species being more susceptible than ruminants because of limited detoxification to OTalpha. The CONTAM Panel considered as reference point (RP) for adverse animal health effects: for pigs and rabbits 0.01 mg OTA/kg feed, for chickens for fattening and hens 0.03 mg OTA/kg feed. A total of 9,184 analytical results on OTA in feed, expressed in dry matter, were available. Dietary exposure was assessed using different scenarios based on either model diets or compound feed (complete feed or complementary feed plus forage). Risk characterisation was made for the animals for which an RP could be identified. The CONTAM Panel considers that the risk related to OTA in feed for adverse health effects for pigs, chickens for fattening, hens and rabbits is low.

8.
EFSA J ; 21(9): e08215, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37711880

ABSTRACT

Mineral oil hydrocarbons (MOH) are composed of saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH). Due to the complexity of the MOH composition, their complete chemical characterisation is not possible. MOSH accumulation is observed in various tissues, with species-specific differences. Formation of liver epithelioid lipogranulomas and inflammation, as well as increased liver and spleen weights, are observed in Fischer 344 (F344) rats, but not in Sprague-Dawley (SD) rats. These effects are related to specific accumulation of wax components in the liver of F344 rats, which is not observed in SD rats or humans. The CONTAM Panel concluded that F344 rats are not an appropriate model for effects of MOSH with wax components. A NOAEL of 236 mg/kg body weight (bw) per day, corresponding to the highest tested dose in F344 rats of a white mineral oil product virtually free of wax components, was selected as relevant reference point (RP). The highest dietary exposure to MOSH was estimated for the young population, with lower bound-upper bound (LB-UB) means and 95th percentiles of 0.085-0.126 and 0.157-0.212 mg/kg bw per day, respectively. Considering a margin of exposure approach, the Panel concluded that the present dietary exposure to MOSH does not raise concern for human health for all age classes. Genotoxicity and carcinogenicity are associated with MOAH with three or more aromatic rings. For this subfraction, a surrogate RP of 0.49 mg/kg bw per day, calculated from data on eight polycyclic aromatic hydrocarbons, was considered. The highest dietary exposure to MOAH was also in the young population, with LB-UB mean and 95th percentile estimations of 0.003-0.031 and 0.011-0.059 mg/kg bw per day, respectively. Based on two scenarios on three or more ring MOAH contents in the diet and lacking toxicological information on effects of 1 and 2 ring MOAH, a possible concern for human health was raised.

9.
EFSA J ; 21(7): e08102, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37448443

ABSTRACT

The European Commission requested EFSA to provide an assessment of the processing conditions which make Ambrosia seeds non-viable in feed materials and compound feed. This assessment also includes information on a reliable procedure to verify the non-viability of the seeds. Ambrosia seeds are known contaminants in feed with maximum levels set in the Directive 2002/32/EC. The manufacturing processes and processing conditions applied to the feed may affect the viability of the Ambrosia seeds. Therefore, the CONTAM Panel compared these conditions with conditions that have been shown to be sufficient to render Ambrosia seeds non-viable. The Panel concluded with a certainty of 99-100% that solvent extraction and toasting of oilseed meals at temperatures of 120°C with steam injection for 10 min or more will make Ambrosia seeds non-viable. Since milling/grinding feed materials for compound feed of piglets, aquatic species and non-food producing animals would not allow particles of sizes ≥1 mm (the minimum size of viable Ambrosia seeds) passing the grinding process it was considered very likely (with ≥ 90% certainty) that these feeds will not contain viable Ambrosia seeds. In poultry, pig, and possibly cattle feed, particle sizes are ≥ 1 mm and therefore Ambrosia seeds could likely (66-90% certainty) survive the grinding process. Starch and gluten either from corn or wheat wet milling would not contain Ambrosia seeds with 99-100% certainty. Finally, ensiling fresh forages contaminated with A. artemisiifolia seeds for more than 3 months is very likely to render all seeds non-viable. The Panel concluded that a combination of the germination test and a subsequent triphenyl-tetrazolium-chloride (TTC) test will very likely (with ≥ 90% certainty) verify the non-viability of Ambrosia seeds. The Panel recommends that data on the presence of viable Ambrosia seeds before and after the different feed production processes should be generated.

10.
EFSA J ; 21(3): e07866, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36875862

ABSTRACT

The European Commission asked EFSA for a scientific opinion on the risks for human health of the presence of grayanotoxins (GTXs) in 'certain honey' from Ericaceae plants. The risk assessment included all structurally related grayananes occurring with GTXs in 'certain' honey. Oral exposure is associated with acute intoxication in humans. Acute symptoms affect the muscles, nervous and cardiovascular systems. These may lead to complete atrioventricular block, convulsions, mental confusion, agitation, syncope and respiratory depression. For acute effects, the CONTAM Panel derived a reference point (RP) of 15.3 µg/kg body weight for the sum of GTX I and III based on a BMDL10 for reduced heart rate in rats. A similar relative potency was considered for GTX I. Without chronic toxicity studies, an RP for long-term effects could not be derived. There is evidence for genotoxicity in mice exposed to GTX III or honey containing GTX I and III, showing increased levels of chromosomal damage. The mechanism of genotoxicity is unknown. Without representative occurrence data for the sum of GTX I and III and consumption data from Ericaceae honey, acute dietary exposure was estimated based on selected concentrations for GTX I and III reflecting concentrations measured in 'certain' honeys. Applying a margin of exposure (MOE) approach, the estimated MOEs raised health concerns for acute toxicity. The Panel calculated the highest concentrations for GTX I and III below which no acute effects would be expected following 'certain honey' consumption. The Panel is 75% or more certain that the calculated highest concentration of 0.05 mg for the sum of GTX I and III per kg honey is protective for all age groups regarding acute intoxications. This value does not consider other grayananes in 'certain honey' and does not cover the identified genotoxicity.

11.
Regul Toxicol Pharmacol ; 140: 105364, 2023 May.
Article in English | MEDLINE | ID: mdl-36907371

ABSTRACT

Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Opinion on Acid Yellow 3 - C054 (CAS Number 8004-92-0, EC No 305-897-5), submission II, preliminary version of 7 May 2021, final version of 23 July 2021, SCCS/1631/21.


Subject(s)
Cosmetics , Risk Assessment , Consumer Product Safety , Attitude
12.
EFSA J ; 21(3): e07884, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36999063

ABSTRACT

EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 µg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.

13.
EFSA J ; 21(2): e07806, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751491

ABSTRACT

In 2017, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of deoxynivalenol (DON) and its acetylated and modified forms in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. For horses, an NOAEL of 36 mg DON/kg feed was established, the highest concentration tested and not showing adverse effects. For poultry, an NOAEL of 5 mg DON/kg feed for broiler chickens and laying hens, and an NOAEL of 7 mg DON/kg feed for ducks and turkeys was derived. The European Commission requested EFSA to review the information regarding the toxicity of DON for horses and poultry and to revise, if necessary, the established reference points (RPs). Adverse effect levels of 1.9 and 1.7 mg DON/kg feed for, respectively, broiler chickens and turkeys were derived from reassessment of existing studies and newly available literature, showing that DON causes effects on the intestines, in particular the jejunum, with a decreased villus height but also histological damage. An RP for adverse animal health effects of 0.6 mg/kg feed for broiler chickens and turkeys, respectively, was established. For horses, an adverse effect level of 5.6 mg DON/kg feed was established from studies showing reduced feed intake, with an RP for adverse animal health effects of 3.5 mg/kg feed. For ducks and laying hens, RPs remain unchanged. Based on mean and P95 (UB) exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing DON was considered a potential concern for broiler chickens and turkeys. For horses, the risk for adverse health effects from feed containing DON is low.

14.
Regul Toxicol Pharmacol ; 138: 105312, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565917

ABSTRACT

OPINION TO BE CITED AS: SCCS (Scientific Committee on Consumer Safety), scientific opinion on Butylated hydroxytoluene (BHT), preliminary version of September 27, 2021, final version of December 2, 2021, SCCS/1636/21.


Subject(s)
Butylated Hydroxytoluene , Cosmetics , Risk Assessment , Consumer Product Safety , Attitude
15.
EFSA J ; 20(9): e07564, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36204158

ABSTRACT

In 2011, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of T-2 (T2) and HT-2 (HT2) toxin in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. In ruminants a LOAEL was established for the sum of T2 and HT2 of 0.3 mg/kg body weight (bw) per day, based on studies with calves and lambs. The CONTAM Panel noted that the effects observed in nutritionally challenged heifers and ewes give rise to the assumption that rumen detoxification of T2 may not always be complete and therefore effective to prevent adverse effects in ruminants. However, the limited data on the effects of T2 on adult ruminants did not allow a conclusion. The European Commission requested EFSA to review the information regarding the toxicity of T2 and HT2 for ruminants and to revise, if necessary, the established Reference Point (RP). Adverse effect levels of 0.001 and 0.01 mg T2/kg bw per day for, respectively, sheep and cows, were derived from case studies, estimated to correspond to feed concentrations of 0.035 mg T2/kg for sheep and 0.6 mg T2/kg for cows. RPs for adverse animal health effects of 0.01 mg/kg feed for sheep and 0.2 mg/kg feed for cows were established. For goats, the RP for cows was selected, in the absence of data that they are more sensitive. Based on mean exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing T2 and HT2 was considered a concern for lactating sheep. For milking goats, a comparison performed between dietary exposure and the RP derived for cows, indicates a potential risk for adverse health effects. For dairy cows and fattening beef, the risk is considered low.

16.
EFSA J ; 20(9): e07524, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177388

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed a decontamination process of fish oils and vegetable oils and fats to reduce the concentrations of dioxins (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, abbreviated together as PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) by adsorption to activated carbon. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed food business operator (FBO) were assessed for the efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and properties of the product. The limited information provided, in particular on the analysis of the samples before and after decontamination, did not allow the CONTAM Panel to conclude whether or not the proposed decontamination process is effective in reducing PCDD/Fs and DL-PCBs in the fish- and vegetable oils and fats. Although there is no evidence from the data provided that the decontamination process leads to detrimental changes in the nutritional composition of the fish- and vegetable oils, it is possible that the process could deplete some beneficial constituents (e.g. vitamins). Taken together, it was not possible for the CONTAM Panel to conclude that the decontamination process as proposed by the FBO is compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

17.
EFSA J ; 20(8): e07534, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36034321

ABSTRACT

In 2018, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. A no observed adverse effect level (NOAEL) of 1 mg/kg feed was established for pigs. In poultry a NOAEL of 20 mg/kg feed and in horses a reference point for adverse animal health effect of 8.8 mg/kg feed was established, referred to as NOAEL. The European Commission (EC) requested EFSA to review the information regarding the toxicity of fumonisins for pigs, poultry and horses and to revise, if necessary, the established NOAELs. The EFSA CONTAM Panel considered that the term reference point (RP) for adverse animal health effects better reflects the uncertainties in the available studies. New evidence which had become available since the previous opinion allowed to revise an RP for adverse animal health effects for poultry from 20 mg/kg to 1 mg/kg feed (based on a LOAEL of 2.5 mg/kg feed for reduced intestinal crypt depth) and for horses from 8.8 to 1.0 mg/kg feed (based on case studies on equine leukoencephalomalacia (ELEM)). For pigs, the previously established NOAEL was confirmed as no further studies suitable for deriving an RP for adverse animal health effects could be identified. Based on exposure estimates performed in the previous opinion, the risk of adverse health effects of feeds containing FB1-3 was considered a concern for poultry, when taking into account the RP of 1 mg/kg feed for intestinal effects. For horses and other solipeds, the risk is considered low, although a large uncertainty associated with exposure was identified. The same conclusions apply to the sum of FB1-3 and their hidden forms.

18.
EFSA J ; 20(4): e07227, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35475165

ABSTRACT

The European Commission has asked the EFSA to evaluate the risk for animal health related to the presence of hydroxymethylfurfural (HMF) in honey bee feed. HMF is a degradation product of particular sugars and can be present in bee feed. HMF is of low acute toxicity in bees but causes increased mortality upon chronic exposure. A benchmark dose lower limit 10% (BMDL10) of 1.16 µg HMF per bee per day has been calculated from mortalities observed in a 20-day study and established as a Reference Point covering also mortality in larvae, drones and queens for which no or insufficient toxicity data were available. Winter bees have a much longer lifespan than summer bees and HMF shows clear time reinforced toxicity (TRT) characteristics. Therefore, additional Reference Point intervals of 0.21-3.1, 0.091-1.1 and 0.019-0.35 µg HMF/bee per day were calculated based on extrapolation to exposure durations of 50, 90 and 180 days, respectively. A total of 219 analytical data of HMF concentrations in bee feed from EU Member States and 88 from Industry were available. Exposure estimates of worker bees and larvae ranged between 0.1 and 0.48, and between 0.1 and 0.51 µg HMF/per day, respectively. They were well below the BMDL10 of 1.16 µg HMF/bee per day, and thus, no concern was identified. However, when accounting for TRT, the probability that exposures were below established reference point intervals was assessed to be extremely unlikely to almost certain depending on exposure duration. A concern for bee health was identified when bees are exposed to HMF contaminated bee feed for several months.

19.
Regul Toxicol Pharmacol ; 126: 105046, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34560169

ABSTRACT

The Cosmetic Regulation (EC) No 1223/2009 specifically covers the risk of nanomaterials used in cosmetic products. If there are concerns regarding the safety of a nanomaterial, the European Commission refers it to the SCCS for a scientific opinion. The Commission mandated the SCCS to identify the scientific basis for safety concerns that could be used as a basis for identifying and prioritising nanomaterials for safety assessment, and to revisit previous inconclusive SCCS opinions on nanomaterials to identify any concerns for potential risks to the consumer health. The SCCS Scientific Advice identified the key general aspects of nanomaterials that should raise a safety concern for a safety assessor/manager, so that the nanomaterial(s) in question could be subjected to safety assessment to establish safety to the consumer. The Advice also developed a list of the nanomaterials notified to the Commission for use in cosmetics in an order of priority for safety assessment, and revisited three previous inconclusive opinions on nanomaterials to highlight concerns over consumer safety that merited further safety assessment.


Subject(s)
Consumer Product Safety/standards , Cosmetics/adverse effects , Nanostructures/adverse effects , Dose-Response Relationship, Drug , Europe , Humans , Particle Size , Risk Assessment , Solubility , Surface Properties
20.
J Radiol Prot ; 41(4)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34488204

ABSTRACT

After nuclear accidents, people can be contaminated internally via ingestion, inhalation and via intact skin or wounds. The assessment of absorbed, committed doses after internal exposure is based on activity measurement byin vivoorin vitrobioassay. Estimation of dose following internal contamination is dependent on understanding the nature and form of the radionuclide. Direct counting methods that directly measureγ-rays coming from within the body or bioassay methods that measure the amount of radioactive materials in urine or feces are used to estimate the intake, which is required for calculating internal exposure doses. The interpretation of these data in terms of intake and the lifetime committed dose requires knowledge or making assumptions about a number of parameters (time, type of exposure, route of the exposure, physical, biological and chemical characteristics) and their biokinetics inside the body. Radioactive materials incorporated into the body emit radiation within the body. Accumulation in some specific organs may occur depending on the types of radioactive materials. Decorporation therapy is that acceleration of the natural rate of elimination of the contaminant will reduce the amount of radioactivity retained in the body. This article presents an overview of treatment of radiological contamination after internal contamination.


Subject(s)
Radioactive Hazard Release , Radiology , Humans , Radiation Dosage , Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...