Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Proc Natl Acad Sci U S A ; 120(49): e2311240120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38019859

ABSTRACT

High-resolution NMR spectroscopy enabled us to characterize allosteric transitions between various functional states of the dimeric Escherichia coli Lac repressor. In the absence of ligands, the dimer exists in a dynamic equilibrium between DNA-bound and inducer-bound conformations. Binding of either effector shifts this equilibrium toward either bound state. Analysis of the ternary complex between repressor, operator DNA, and inducer shows how adding the inducer results in allosteric changes that disrupt the interdomain contacts between the inducer binding and DNA binding domains and how this in turn leads to destabilization of the hinge helices and release of the Lac repressor from the operator. Based on our data, the allosteric mechanism of the induction process is in full agreement with the well-known Monod-Wyman-Changeux model.


Subject(s)
Escherichia coli Proteins , Lac Repressors/genetics , Lac Repressors/metabolism , Escherichia coli Proteins/metabolism , Allosteric Regulation/genetics , Escherichia coli/metabolism , DNA/metabolism , Protein Structure, Secondary , Lac Operon/genetics
2.
Sci Adv ; 8(30): eabo0517, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35895815

ABSTRACT

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


Subject(s)
Histones , Nucleosomes , DNA/chemistry , DNA Repair , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/metabolism , Molecular Chaperones/genetics
3.
J Mol Graph Model ; 111: 108061, 2022 03.
Article in English | MEDLINE | ID: mdl-34837785

ABSTRACT

Signaling by Toll-Like Receptors and the Interleukin-1 Receptor (IL1-R) involves intracellular binding of MyD88, followed by assembly of IL1-R Associated Kinases (IRAKs) into the so-called Myddosome. Using NMR, Nechama et al. determined the structure of the IRAK-M death domain monomer (PDBid: 5UKE). With this structure, they performed a docking study to model the location of IRAK-M in the Myddosome. Based on this, they present a molecular basis for selectivity of IRAK-M towards IRAK1 over IRAK2 binding. When we attempted to use 5UKE as a homology modeling template, we noticed that our 5UKE-based models had structural issues, such as disallowed torsion angles and solvent exposed tryptophans. We therefore analyzed the NMR ensemble of 5UKE using structure validation tools and we compared 5UKE with homologous high-resolution X-ray structures. We identified several structural anomalies in 5UKE, including packing issues, frayed helices and improbable side chain conformations. We used Yasara to build a homology model, based on two high resolution death domain crystal structures, as an alternative model for the IRAK-M death domain (atomic coordinates, modeling details and validation are available at https://swift.cmbi.umcn.nl/gv/service/5uke/). Our model agrees better with known death domain structure information than 5UKE and also with the chemical shift data that was deposited for 5UKE.


Subject(s)
Signal Transduction , Protein Structure, Secondary
4.
Magn Reson (Gott) ; 2(1): 465-474, 2021.
Article in English | MEDLINE | ID: mdl-37904778

ABSTRACT

This publication, in honour of Robert Kaptein's 80th birthday, contains contributions from colleagues, many of whom have worked with him, and others who admire his work and have been stimulated by his research. The contributions show current research in biomolecular NMR, spin hyperpolarisation and spin chemistry, including CIDNP (chemically induced dynamic nuclear polarisation), topics to which he has contributed enormously. His proposal of the radical pair mechanism was the birth of the field of spin chemistry, and the laser CIDNP NMR experiment on a protein was a major breakthrough in hyperpolarisation research. He set milestones for biomolecular NMR by developing computational methods for protein structure determination, including restrained molecular dynamics and 3D NMR methodology. With a lac repressor headpiece, he determined one of the first protein structures determined by NMR. His studies of the lac repressor provided the first examples of detailed studies of protein nucleic acid complexes by NMR. This deepened our understanding of protein DNA recognition and led to a molecular model for protein sliding along the DNA. Furthermore, he played a leading role in establishing the cluster of NMR large-scale facilities in Europe. This editorial gives an introduction to the publication and is followed by a biography describing his contributions to magnetic resonance.

5.
Chempluschem ; 85(9): 2177-2185, 2020 09.
Article in English | MEDLINE | ID: mdl-32986260

ABSTRACT

Field-Induced Residual Dipolar Couplings (fiRDC) are a valuable source of long-range information on structure of nucleic acids (NA) in solution. A web application (HERMES) was developed for structure-based prediction and analysis of the (fiRDCs) in NA. fiRDC prediction is based on input 3D model structure(s) of NA and a built-in library of nucleobase-specific magnetic susceptibility tensors and reference geometries. HERMES allows three basic applications: (i) the prediction of fiRDCs for a given structural model of NAs, (ii) the validation of experimental or modeled NA structures using experimentally derived fiRDCs, and (iii) assessment of the oligomeric state of the NA fragment and/or the identification of a molecular NA model that is consistent with experimentally derived fiRDC data. Additionally, the program's built-in routine for rigid body modeling allows the evaluation of relative orientation of domains within NA that is in agreement with experimental fiRDCs.

6.
Front Chem ; 7: 921, 2019.
Article in English | MEDLINE | ID: mdl-32039147

ABSTRACT

Ubiquitination is a process in which a protein is modified by the covalent attachment of the C-terminal carboxylic acid of ubiquitin (Ub) to the ε-amine of lysine or N-terminal methionine residue of a substrate protein or another Ub molecule. Each of the seven internal lysine residues and the N-terminal methionine residue of Ub can be linked to the C-terminus of another Ub moiety to form 8 distinct Ub linkages and the resulting differences in linkage types elicit different Ub signaling pathways. Cellular responses are triggered when proteins containing ubiquitin-binding domains (UBDs) recognize and bind to specific polyUb linkage types. To get more insight into the differences between polyUb chains, all of the seven lysine-linked di-ubiquitin molecules (diUbs) were prepared and used as a model to study their structural conformations in solution using NMR spectroscopy. We report the synthesis of diUb molecules, fully 15N-labeled on the distal (N-terminal) Ub moiety and revealed their structural orientation with respect to the proximal Ub. As expected, the diUb molecules exist in different conformations in solution, with multiple conformations known to exist for K6-, K48-, and K63-linked diUb molecules. These multiple conformations allow structural flexibility in binding with UBDs thereby inducing unique responses. One of the well-known but poorly understood UBD-Ub interaction is the recognition of K6 polyubiquitin by the ubiquitin-associated (UBA) domain of UBXN1 in the BRCA-mediated DNA repair pathway. Using our synthetic 15N-labeled diUbs, we establish here how a C-terminally extended UBA domain of UBXN1 confers specificity to K6 diUb while the non-extended version of the domain does not show any linkage preference. We show that the two distinct conformations of K6 diUb that exist in solution converge into a single conformation upon binding to this extended form of the UBA domain of the UBXN1 protein. It is likely that more of such extended UBA domains exist in nature and can contribute to linkage-specificity in Ub signaling. The isotopically labeled diUb compounds described here and the use of NMR to study their interactions with relevant partner molecules will help accelerate our understanding of Ub signaling pathways.

7.
Molecules ; 23(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563071

ABSTRACT

Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Amino Acid Sequence , Animals , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/chemistry , Endonucleases/chemistry , Helix-Loop-Helix Motifs , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Signal Transduction
8.
Front Mol Biosci ; 5: 100, 2018.
Article in English | MEDLINE | ID: mdl-30505835

ABSTRACT

Endocannabinoid peptides, or "pepcans," are endogenous ligands of the CB1 cannabinoid receptor. Depending on their length, they display diverse activity: For instance, the nona-peptide Pepcan-9, also known as hemopressin, is a powerful inhibitor of CB1, whereas the longer variant Pepcan-12, which extends by only three amino acid residues at the N-terminus, acts on both CB1 and CB2 as an allosteric modulator, although with diverse effects. Despite active research on their pharmacological applications, very little is known about structure-activity relationships of pepcans. Different structures have been proposed for the nona-peptide, which has also been reported to form fibrillar aggregates. This might have affected the outcome and reproducibility of bioactivity studies. In an attempt of elucidating the determinants of both biological activity and aggregation propensity of Pepcan-9 and Pepcan-12, we have performed their structure characterization in solvent systems characterized by different polarity and pH. We have found that, while disordered in aqueous environment, both peptides display helical structure in less polar environment, mimicking the proteic receptor milieu. In the case of Pepcan-9, this structure is fully consistent with the observed modulation of the CB1. For Pepcan-12, whose allosteric binding site is still unknown, the presented structure is compatible with the binding at one of the previously proposed allosteric sites on CB1. These findings open the way to structure-driven design of selective peptide modulators of CB1.

9.
Chem Sci ; 9(30): 6348-6360, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30310563

ABSTRACT

Kraft lignin, the main by-product of the pulping industry, is an abundant, yet highly underutilized renewable aromatic polymer. During kraft pulping, the lignin undergoes extensive structural modification, with many labile native bonds being replaced by new, more recalcitrant ones. Currently little is known about the nature of those bonds and linkages in kraft lignin, information that is essential for its efficient valorization to renewable fuels, materials or chemicals. Here, we provide detailed new insights into the structure of softwood kraft lignin, identifying and quantifying the major native as well as kraft pulping-derived units as a function of molecular weight. De novo synthetic kraft lignins, generated from (isotope labelled) dimeric and advanced polymeric models, provided key mechanistic understanding of kraft lignin formation, revealing different process dependent reaction pathways to be operating. The discovery of a novel kraft-derived lactone condensation product proved diagnostic for the identification of a previously unknown homovanillin based condensation pathway. The lactone marker is found in various different soft- and hardwood kraft lignins, suggesting the general pertinence of this new condensation mechanism for kraft pulping. These novel structural and mechanistic insights will aid the development of future biomass and lignin valorization technologies.

10.
Nucleic Acids Res ; 46(14): 7138-7152, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29905837

ABSTRACT

Genome replication, transcription and repair require the assembly/disassembly of the nucleosome. Histone chaperones are regulators of this process by preventing formation of non-nucleosomal histone-DNA complexes. Aprataxin and polynucleotide kinase like factor (APLF) is a non-homologous end-joining (NHEJ) DNA repair factor that possesses histone chaperone activity in its acidic domain (APLFAD). Here, we studied the molecular basis of this activity using biochemical and structural methods. We find that APLFAD is intrinsically disordered and binds histone complexes (H3-H4)2 and H2A-H2B specifically and with high affinity. APLFAD prevents unspecific complex formation between H2A-H2B and DNA in a chaperone assay, establishing for the first time its specific histone chaperone function for H2A-H2B. On the basis of a series of nuclear magnetic resonance studies, supported by mutational analysis, we show that the APLFAD histone binding domain uses two aromatic side chains to anchor to the α1-α2 patches on both H2A and H2B, thereby covering most of their DNA-interaction surface. An additional binding site on both APLFAD and H2A-H2B may be involved in the handoff between APLF and DNA or other chaperones. Together, our data support the view that APLF provides not only a scaffold but also generic histone chaperone activity for the NHEJ-complex.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Histone Chaperones/chemistry , Poly-ADP-Ribose Binding Proteins/chemistry , DNA/chemistry , DNA/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Histone Chaperones/metabolism , Histones/chemistry , Histones/metabolism , Models, Molecular , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , Protein Domains
12.
J Biol Chem ; 292(7): 2842-2853, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28028171

ABSTRACT

The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.


Subject(s)
DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Binding Sites , DNA-Binding Proteins/chemistry , Dimerization , Helix-Loop-Helix Motifs , Humans , Protein Binding , Substrate Specificity
13.
Structure ; 24(10): 1707-1718, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27594685

ABSTRACT

The type IV secretion system (T4SS) from the phytopathogen Xanthomonas citri (Xac) is a bactericidal nanomachine. The T4SS core complex is a ring composed of multiple copies of VirB7-VirB9-VirB10 subunits. Xac-VirB7 contains a disordered N-terminal tail (VirB7NT) that recognizes VirB9, and a C-terminal domain (VirB7CT) involved in VirB7 self-association. Here, we show that VirB7NT forms a short ß strand upon binding to VirB9 and stabilizes it. A tight interaction between them is essential for T4SS assembly and antibacterial activity. Abolishing VirB7 self-association or deletion of the VirB7 C-terminal domain impairs this antibacterial activity without disturbing T4SS assembly. These findings reveal protein interactions within the core complex that are critical for the stability and activity of a T4SS.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Type IV Secretion Systems/metabolism , Xanthomonas/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Models, Molecular , Protein Binding , Protein Stability , Protein Structure, Secondary , Type IV Secretion Systems/chemistry
14.
Protein Sci ; 25(9): 1722-33, 2016 09.
Article in English | MEDLINE | ID: mdl-27364543

ABSTRACT

Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two ß-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.


Subject(s)
Bacterial Proteins/chemistry , Geobacillus stearothermophilus/chemistry , Models, Molecular , Prokaryotic Initiation Factor-2/chemistry , Ribosome Subunits, Small, Bacterial/chemistry , Bacterial Proteins/metabolism , Geobacillus stearothermophilus/metabolism , Prokaryotic Initiation Factor-2/metabolism , Protein Domains , Ribosome Subunits, Small, Bacterial/metabolism
15.
ChemMedChem ; 11(9): 990-1002, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27136597

ABSTRACT

Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.


Subject(s)
Polysaccharides/metabolism , Sialic Acids/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , Female , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Molecular Docking Simulation , Molecular Sequence Data , Myristoylated Alanine-Rich C Kinase Substrate , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides/chemistry , Polysaccharides/pharmacology , Protein Binding , Protein Structure, Tertiary , Sialic Acids/chemistry , Sialic Acids/pharmacology
17.
Nat Struct Mol Biol ; 23(4): 324-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26974125

ABSTRACT

Signaling cascades depend on scaffold proteins that regulate the assembly of multiprotein complexes. Missense mutations in scaffold proteins are frequent in human cancer, but their relevance and mode of action are poorly understood. Here we show that cancer point mutations in the scaffold protein Axin derail Wnt signaling and promote tumor growth in vivo through a gain-of-function mechanism. The effect is conserved for both the human and Drosophila proteins. Mutated Axin forms nonamyloid nanometer-scale aggregates decorated with disordered tentacles, which 'rewire' the Axin interactome. Importantly, the tumor-suppressor activity of both the human and Drosophila Axin cancer mutants is rescued by preventing aggregation of a single nonconserved segment. Our findings establish a new paradigm for misregulation of signaling in cancer and show that targeting aggregation-prone stretches in mutated scaffolds holds attractive potential for cancer treatment.


Subject(s)
Axin Protein/genetics , Axin Protein/metabolism , Neoplasms/genetics , Point Mutation , Protein Aggregates , Wnt Signaling Pathway , Amino Acid Sequence , Animals , Axin Protein/analysis , Axin Protein/ultrastructure , Cell Line , Drosophila/chemistry , Drosophila/genetics , Drosophila/metabolism , Drosophila/ultrastructure , Drosophila Proteins/analysis , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , HEK293 Cells , Humans , Mice , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Neoplasms/metabolism , Neoplasms/pathology , Protein Conformation , Protein Interaction Maps , Scattering, Small Angle , Sequence Alignment , X-Ray Diffraction
18.
J Biomol NMR ; 64(1): 53-62, 2016 01.
Article in English | MEDLINE | ID: mdl-26685997

ABSTRACT

Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)JCH and (3)JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.


Subject(s)
Magnetic Fields , Nuclear Magnetic Resonance, Biomolecular/methods , Nucleic Acids/chemistry , Quantum Theory
19.
ACS Chem Biol ; 10(11): 2624-32, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26352092

ABSTRACT

The estrogen receptors (ERs) feature, next to their transcriptional role, important nongenomic signaling actions, with emerging clinical relevance. The Src Homology 2 (SH2) domain mediated interaction between cSrc kinase and ER plays a key role in this; however the molecular determinants of this interaction have not been elucidated. Here, we used phosphorylated ER peptide and semisynthetic protein constructs in a combined biochemical and structural study to, for the first time, provide a quantitative and structural characterization of the cSrc SH2-ER interaction. Fluorescence polarization experiments delineated the SH2 binding motif in the ER sequence. Chemical shift perturbation analysis by nuclear magnetic resonance (NMR) together with molecular dynamics (MD) simulations allowed us to put forward a 3D model of the ER-SH2 interaction. The structural basis of this protein-protein interaction has been compared with that of the high affinity SH2 binding sequence GpYEEI. The ER features a different binding mode from that of the "two-pronged plug two-hole socket" model in the so-called specificity determining region. This alternative binding mode is modulated via the folding of ER helix 12, a structural element directly C-terminal of the key phosphorylated tyrosine. The present findings provide novel molecular entries for understanding nongenomic ER signaling and targeting the corresponding disease states.


Subject(s)
Models, Biological , Receptors, Estrogen/metabolism , src-Family Kinases/metabolism , Amino Acid Sequence , Binding Sites , Female , Fluorescence , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Sequence Data , Peptides/chemistry , Peptides/genetics , Protein Binding , Protein Folding , Receptors, Estrogen/chemistry , src Homology Domains , src-Family Kinases/chemistry
20.
FEBS Lett ; 589(19 Pt B): 2726-30, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26272829

ABSTRACT

This paper describes a study of the phospholipid profile of Escherichia coli MG1655 cultures at the B and D periods of the cell cycle. The results indicate that the phosphatidyl glycerol fraction grows relatively rapidly and that the size of the cardiolipin (CL) fraction does not grow at all during cell elongation. This is consistent with observations that CL is located preferentially at the poles of E. coli. It also suggests that lipid production is controlled as a function of the cell cycle.


Subject(s)
Cell Cycle , Escherichia coli/chemistry , Escherichia coli/cytology , Phospholipids/chemistry , Escherichia coli/growth & development , Escherichia coli/metabolism , Phospholipids/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL