Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
ACS Omega ; 9(8): 9226-9235, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38434874

The present research is primarily focused on investigating the characteristics of environmentally persistent free radicals (EPFRs) generated from commonly recognized aromatic precursors, namely, 1,2-dichlorobenzene (DCB) and 2-monochlorophenol (MCP), within controlled laboratory conditions at a temperature of 230 °C, termed as DCB230 and MCP230 EPFRs, respectively. An intriguing observation has emerged during the creation of EPFRs from MCP and DCB utilizing a catalyst 5% CuO/SiO2, which was prepared through various methods. A previously proposed mechanism, advanced by Dellinger and colleagues (a conventional model), postulated a positive correlation between the degree of hydroxylation on the catalyst's surface (higher hydroxylated, HH and less hydroxylated, LH) and the anticipated EPFR yields. In the present study, this correlation was specifically confirmed for the DCB precursor. Particularly, it was observed that increasing the degree of hydroxylation at the catalyst's surface resulted in a greater yield of EPFRs for DCB230. The unexpected finding was the indifferent behavior of MCP230 EPFRs to the surface morphology of the catalyst, i.e., no matter whether copper oxide nanoparticles are distributed densely, sparsely, or completely agglomerated. The yields of MCP230 EPFRs remained consistent regardless of the catalyst type or preparation protocol. Although current experimental results confirm the early model for the generation of DCB EPFRs (i.e., the higher the hydroxylation is, the higher the yield of EPFRs), it is of utmost importance to closely explore the heterogeneous alternative mechanism(s) responsible for generating MCP230 EPFRs, which may run parallel to the conventional model. In this study, detailed spectral analysis was conducted using the EPR technique to examine the nature of DCB230 EPFRs and the aging phenomenon of DCB230 EPFRs while they exist as surface-bound o-semiquinone radicals (o-SQ) on copper sites. Various aspects concerning bound radicals were explored, including the hydrogen-bonding tendencies of o-semiquinone (o-SQ) radicals, the potential reversibility of hydroxylation processes occurring on the catalyst's surface, and the analysis of selected EPR spectra using EasySpin MATLAB. Furthermore, alternative routes for EPFR generation were thoroughly discussed and compared with the conventional model.

2.
bioRxiv ; 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36711445

Significance: Drug-coated angioplasty balloons (DCBs) are used to treat peripheral artery disease, and proper dosage depends on coating characteristics like uniformity and number of layers. Aim: Quantify coating uniformity and correlate fluorescence intensity to drug loading for DCBs coated with 5, 10, 15, or 20 layers of poly(lactic-co-glycolic acid) nanoparticles (NPs) entrapped with quercetin. Approach: Images of DCBs were acquired using fluorescence microscopy. Coating uniformity was quantified from histograms and horizontal line profiles, and cracks on the balloons were measured and counted. Fluorescence intensity was correlated with the drug loading of quercetin found from gravimetric analysis coupled with high-performance liquid chromatography (HPLC). Results: Higher numbers of coating layers on DCBs may be associated with less uniform coatings. Cracks in the coating were present on all balloons, and the length of cracks was not significantly different between balloons coated with different numbers of layers or balloons coated with the same number of layers. A strong positive correlation was identified between fluorescence intensity and drug loading. Conclusion: There may be a relationship between the number of NP layers and the uniformity of the coating, but further investigation is needed to confirm this. Fluorescence intensity appears to be a strong predictor of drug loading on DCBs coated with quercetin-entrapped NPs, demonstrating that fluorescent imaging may be a viable alternative to drug release studies.

3.
ACS Omega ; 7(34): 30241-30249, 2022 Aug 30.
Article En | MEDLINE | ID: mdl-36061701

To assess contribution of the radicals formed from biomass burning, our recent findings toward the formation of resonantly stabilized persistent radicals from hydrolytic lignin pyrolysis in a metal-free environment are presented in detail. Such radicals have particularly been identified during fast pyrolysis of lignin dispersed into the gas phase in a flow reactor. The trapped radicals were analyzed by X-band electron paramagnetic resonance (EPR) and high-frequency (HF) EPR spectroscopy. To conceptualize available data, the metal-free biogenic bulky stable radicals with extended conjugated backbones are suggested to categorize as a new type of metal-free environmentally persistent free radicals (EPFRs) (bio-EPFRs). They can be originated not only from lignin/biomass pyrolysis but also during various thermal processes in combustion reactors and media, including tobacco smoke, anthropogenic sources and wildfires (forest/bushfires), and so on. The persistency of bio-EPFRs from lignin gas-phase pyrolysis was outlined with the evaluated lifetime of two groups of radicals being 33 and 143 h, respectively. The experimental results from pyrolysis of coniferyl alcohol as a model compound of lignin in the same fast flow reactor, along with our detailed potential energy surface analyses using high-level DFT and ab initio methods toward decomposition of a few other model compounds reported earlier, provide a mechanistic view on the formation of C- and O-centered radicals during lignin gas-phase pyrolysis. The preliminary measurements using HF-EPR spectroscopy also support the existence of O-centered radicals in the radical mixtures from pyrolysis of lignin possessing a high g value (2.0048).

4.
PLoS One ; 17(8): e0268307, 2022.
Article En | MEDLINE | ID: mdl-36001584

Peripheral artery disease (PAD) is a systemic vascular disease of the legs that results in a blockage of blood flow from the heart to the lower extremities. Now one of the most common causes of mortality in the U.S., the first line of therapy for PAD is to mechanically open the blockages using balloon angioplasty. Coating the balloons with antiproliferative agents can potentially reduce vessel re-narrowing, or restenosis after surgical intervention, but current drug-coated balloons releasing chemotherapy agents like paclitaxel have in some cases shown increased mortality long-term. Our aim was to design a novel drug-coated balloon using a polymeric nanodelivery system for a sustained release of polyphenols that reduce restenosis but with reduced toxicity compared to chemotherapy agents. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles with entrapped quercetin, a dimethoxy quercetin (rhamnazin), as well as quercetin covalently attached to PLGA, were developed. Balloon catheters were coated with polymeric nanoparticles using an ultrasonic method, and nanoparticle characteristics, drug loading, coating uniformity and drug release were determined. The adhesion of nanoparticles to vascular smooth muscle cells and the antiproliferative effect of nano-delivered polyphenols were also assessed. Of the nanoparticle systems tested, those with covalently attached quercetin provided the most sustained release over a 6-day period. Although these particles adhered to cells to a smaller extent compared to other nanoparticle formulations, their attachment was resistant to washing. These particles also exhibited the greatest anti-proliferative effect. In addition, their attachment was not altered when the cells were grown in calcifying conditions, and in PAD tissue calcification is typically a condition that impedes drug delivery. Moreover, the ultrasonic coating method generated a uniform balloon coating. The polymeric nanoparticle system with covalently attached quercetin developed herein is thus proposed as a promising platform to reduce restenosis post-angioplasty.


Angioplasty, Balloon , Nanoparticles , Peripheral Arterial Disease , Angioplasty, Balloon/methods , Coated Materials, Biocompatible , Delayed-Action Preparations , Humans , Paclitaxel/pharmacology , Peripheral Arterial Disease/therapy , Polymers , Quercetin/pharmacology
5.
Bioresour Technol ; 343: 126044, 2022 Jan.
Article En | MEDLINE | ID: mdl-34619322

A novel gasification fed-batch reactor enabling both thermogravimetric and gas analysis of large samples (up to tens of grams) was designed and tested. Air gasification experiments on food-court waste representative samples and its components were performed at 700 °C and 800 °C using ER = 0.3. At both temperatures, the lignocellulosics fraction produced highest H2 concentration (greater than 21% at 800 °C) while the plastic components generated less H2 regardless of process temperature (2.44%-7.08%). Synergistic effects of multiple components gasification with respect to H2 production was noticed through its non-linear evolution at 700 °C (ranging from 1.18% to 5.38%). A strong negative effect was observed at 800 °C; plastic addition reduced H2 production when combined with lignocellulosic and organic matter (1.02% to 9.73%). The same effects were observed for CH4 formation. This phenomenon was validated by kinetic analysis of decay curves of all components and their mixtures at the beginning of gasification in entire temperature region.


Refuse Disposal , Food , Kinetics , Plastics , Temperature
6.
Bioresour Technol ; 277: 179-194, 2019 Apr.
Article En | MEDLINE | ID: mdl-30670346

The review describes different catalysts and reactor-types used in microwave-assisted thermochemical biomass conversion. We present comparative review of various catalytic experiments and experimental conditions using catalysts in both in situ and ex situ processes. In situ catalytic processes are more frequently used due to simpler experimental set up. However, the process leads to higher catalytic deactivation rate and catalyst recovery is difficult. Catalysts used in ex situ processes require a more complex experimental set-up, the advantage being the fact that optimum temperature can be obtained to achieve best results catalyst recovery is facile, and its deactivation occurs at a lower rate. The catalysts described herein represent just a small part of the catalyst types/family that can be theoretically used. Commonly used catalysts are zeolites, metal oxides, various salts or carbon type materials but other materials or improvements of those mentioned need to be tested in the future.


Microwaves , Biomass , Catalysis , Pyrolysis , Temperature
7.
Ultrason Sonochem ; 51: 496-503, 2019 Mar.
Article En | MEDLINE | ID: mdl-29793838

Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of an ultrasonic system proved to be a viable method for the pretreatment of algae for enhanced lipid yields. Future research should focus on identifying alternative extraction solvents and expanding the range of treatment conditions to optimize the ultrasonic power and treatment times for maximum lipid recovery.


Chemical Fractionation/instrumentation , Coculture Techniques , Cyanobacteria/chemistry , Lipids/isolation & purification , Microalgae/chemistry , Transducers , Ultrasonic Waves , Chlorella vulgaris/chemistry , Chlorella vulgaris/growth & development , Cyanobacteria/growth & development , Microalgae/growth & development , Temperature
8.
J Food Sci Technol ; 53(3): 1424-34, 2016 Mar.
Article En | MEDLINE | ID: mdl-27570267

Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.

9.
Bioresour Technol ; 201: 97-104, 2016 Feb.
Article En | MEDLINE | ID: mdl-26638139

In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications.


Biofuels , Hexanes/chemistry , Methyl Ethers/chemistry , Sapium/chemistry , Seeds/chemistry , Catalysis , Esterification , Introduced Species , Microwaves , Solvents/chemistry , Temperature
10.
Bioresour Technol ; 200: 262-71, 2016 Jan.
Article En | MEDLINE | ID: mdl-26496215

Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass.


Biofuels , Cellulose , Ethanol/metabolism , Saccharum/chemistry , Sonication/methods , Biomass , Cellulose/chemistry , Cellulose/metabolism , Cellulose/radiation effects , Glucose/metabolism , Time Factors , Ultrasonic Waves
11.
AMB Express ; 5(1): 83, 2015 Dec.
Article En | MEDLINE | ID: mdl-26698315

Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration-EC, temperature-T, added water content-AWC, and reaction time-RT. Biodiesel yields were quantified by (1)H NMR spectroscopy and subsequently modeled by a second order polynomial equation with interactions. Lipozyme enzymes were more tolerant to high temperatures in neem and shea oils reaction media compared to that of mango oil. The optimum reaction conditions EC, T, AWC, and RT assuring near complete conversion were as follows: mango oil 7.25 %, 36.6 °C, 10.9 %, 36.4 h; neem oil EC = 7.19 %, T = 45.7 °C, AWC = 8.43 %, RT = 25.08 h; and shea oil EC = 4.43 %, T = 45.65 °C, AWC = 6.21 % and RT = 25.08 h. Validation experiments of these optimum conditions gave ME yields of 98.1 ± 1.0, 98.5 ± 1.6 and 99.3 ± 0.4 % for mango, neem and shea oils, respectively, which all met ASTM biodiesel standards.

12.
J Colloid Interface Sci ; 446: 163-9, 2015 May 15.
Article En | MEDLINE | ID: mdl-25666457

Over the past several years, nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS) have been introduced into the scientific literature involving many analytical, biological, and technological applications. In this regard, these nanoGUMBOS have been shown to display a number of unique properties including fluorescence, magnetism, tumor targeting, and optoelectronic. To date, however, little focus has been placed on developing and refining approaches for generation of size-controlled nanoGUMBOS from GUMBOS building blocks. Herein, we describe a systematic effort to define various strategies for the production of well-defined nanoGUMBOS. Specifically, we describe methods based on (i) sonochemical, (ii) microwave-assisted, (iii) cyclodextrin-assisted, and (iv) surfactant-assisted syntheses of nanoGUMBOS, evaluating the efficiency of each technique in controlling the size, sphericity, and uniformity of nanoGUMBOS produced. The effect of systematic variation in experimental parameters such as concentration, cation-to-anion ratio, as well as presence and type of template introduced for formation of nanoGUMBOS is also investigated.


Cyclodextrins/chemistry , Nanoparticles/chemistry , Organic Chemicals/chemistry , Salts/chemistry , Surface-Active Agents/chemistry , Fluorescence , Microscopy, Fluorescence , Microwaves , Surface Properties
13.
Appl Spectrosc ; 68(3): 340-52, 2014.
Article En | MEDLINE | ID: mdl-24666951

The photothermal properties of several near-infrared-absorbing nanoparticles derived from group of uniform materials based on organic salts (GUMBOS) and composed of cationic dyes coupled with biocompatible anions are evaluated. These nanoparticles were synthesized using a reprecipitation method performed at various pH values: 2.0, 5.0, 7.0, 9.0, and 11.0. The cations for the nanoparticles derived from GUMBOS (nanoGUMBOS), [1048] and [1061], have absorbance maxima at wavelengths overlapping with human soft tissue absorbance minima. Near-infrared-absorbing nanoGUMBOS excited with a 1064 nm continuous laser led to heat generation, with an average temperature increase of 20.4 ± 2.7 °C. Although the [1061][Deoxycholate] nanoGUMBOS generated the highest temperature increase (23.7 ± 2.4 °C), it was the least photothermally efficient compound (13.0%) due to its relatively large energy band gap of 0.892 eV. The more photothermally efficient compound [1048][Ascorbate] (64.4%) had a smaller energy band gap of 0.861 eV and provided an average photothermal temperature increase of 21.0 ± 2.1 °C.

14.
Article En | MEDLINE | ID: mdl-24779226

Biofuels have the potential to replace a significant portion of the transportation needs of the USA and the world. Low-cost lipid feedstock (i.e. tallow tree seeds) can be used for production of biodiesel, but these seeds need to be dried. Microwave drying is utilized to dry various seeds and grain, but for this process to be most efficient the dielectric properties of the materials need to be known. This study presents, for the first time, the dielectric properties of the seeds of the Chinese tallow tree. The dielectric constant and dielectric loss factor were determined using a modified free-space method for different moisture contents at frequency ranges centered around 915 and 2450 MHz respectively. The dielectric constant decreased with frequency in those respective ranges, and increased linearly with increasing moisture content, from 1.96 at 0% m.c. to 2.3 at 7% m.c. at 915 MHz, and from 2.08 at 0% m.c. to 2.42 at 7.6% m.c. at 2450 MHz. The dielectric loss factor generally decreased with frequency in both frequency ranges, and increased linearly with moisture content from a low of 0.16 at 0% m.c. to 0.21 at 7.56% at 915 MHz, respectively from a low of 0.13 at 0% m.c. to 0.2 at 7.6% m.c. at 2450 MHz. These results can be used to design microwave processing operations and systems for drying of tallow tree seeds, as well as for non-destructive determination of theses seeds' moisture content.


Electric Impedance , Models, Chemical , Models, Molecular , Sapium/chemistry , Seeds/chemistry , Computer Simulation , Materials Testing
15.
Bioresour Technol ; 127: 165-74, 2013 Jan.
Article En | MEDLINE | ID: mdl-23131637

Advanced microwave technology has the potential to significantly enhance the biodiesel production process. Knowledge of dielectric properties of materials plays a major role in microwave design for any process. Dielectric properties (ε' and ε") of biodiesel precursors: soybean oil, alcohols and catalyst and their different mixtures were measured using a vector network analyzer and a slim probe in an open ended coaxial probe method at four different temperatures (30, 45, 60 and 75 °C) and in the frequency range of 280 MHz to 4.5 GHz. Results indicate that the microwave dielectric properties depend significantly on both temperature and frequency. Addition of catalyst significantly affected the dielectric properties. Dielectric properties behaved differently when oil, alcohol and catalyst was mixed at room temperature before heating and when the oil and the alcohol catalyst mixture was heated separately to a pre-determined temperature before mixing. These results can be used in designing microwave based transesterification system.


Alcohols/analysis , Biofuels/analysis , Dielectric Spectroscopy/methods , Microwaves , Soybean Oil/analysis , Temperature
16.
Bioresour Technol ; 110: 190-7, 2012 Apr.
Article En | MEDLINE | ID: mdl-22322148

The efficiency of a batch microwave-assisted ammonia heating system was investigated as pretreatment for sweet sorghum bagasse and its effect on porosity, chemical composition, particle size, enzymatic hydrolysis and fermentation into ethanol evaluated. Sorghum bagasse, fractionated into three particle size groups (9.5-18, 4-6 and 1-2mm), was pretreated with ammonium hydroxide (28% v/v solution) and water at a ratio of 1:0.5:8 at 100, 115, 130, 145 and 160°C for 1h. Simon's stain method revealed an increase in the porosity of the biomass compared to untreated biomass. The most lignin removal (46%) was observed at 160°C. About 90% of the cellulose and 73% of the hemicellulose remained within the bagasse. The best glucose yields and ethanol yields (from glucose only) among all different pretreatment conditions averaged 42/100g dry biomass and 21/100g dry biomass, respectively with 1-2mm sorghum bagasse pretreated at 130°C for 1h.


Ammonia/chemistry , Ethanol/metabolism , Microwaves , Sorghum/metabolism , Biomass , Fermentation , Hydrolysis , Microscopy, Electron, Scanning , Particle Size , Temperature
17.
Article En | MEDLINE | ID: mdl-24432470

Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.


Biofuels/analysis , Heating/methods , Microwaves , Models, Chemical , Plant Oils/chemistry , Plant Oils/radiation effects , Rheology/methods , Computer Simulation , Esterification/radiation effects , Radiation Dosage
18.
Bioresour Technol ; 102(17): 7896-902, 2011 Sep.
Article En | MEDLINE | ID: mdl-21715160

Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80°C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.


Esters/chemical synthesis , Microwaves , Plant Oils/chemistry , Soybean Oil/chemistry , Biofuels , Esterification , Kinetics , Oxidation-Reduction , Rice Bran Oil , Viscosity
19.
Bioresour Technol ; 102(3): 3396-403, 2011 Feb.
Article En | MEDLINE | ID: mdl-20980140

A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (p<0.0001) on extraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock.


Chemical Fractionation/instrumentation , Chlorophyta/metabolism , Chlorophyta/radiation effects , Heating/instrumentation , Microwaves , Oils/isolation & purification , Oils/metabolism , Chemical Fractionation/methods , Equipment Design , Equipment Failure Analysis , Heating/methods
20.
Nanotechnology ; 21(43): 435101, 2010 Oct 29.
Article En | MEDLINE | ID: mdl-20876978

Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 °C.


Chickens , Hot Temperature , Infrared Rays , Lasers , Nanotubes, Carbon/chemistry , Wings, Animal/anatomy & histology , Animals , Heating , Kinetics , Nanotubes, Carbon/ultrastructure , Organ Specificity , Surface Properties , Time Factors
...