Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826408

ABSTRACT

Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain's blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we here explore their application to high-resolution MRA data, and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation package, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. Combined with an innovative data augmentation technique, which leverages the resemblance of vascular structures, VesselBoost enables detailed vascular segmentations.

2.
Magn Reson Med ; 92(3): 997-1010, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38778631

ABSTRACT

PURPOSE: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions. In this work, we use a multishot 3D echo plannar imaging (3D EPI) sequence with shot-selective 2D CAIPIRIHANA to acquire high-resolution, whole-brain data for QSM with minimal distortion and blurring. METHODS: To test clinical viability, the 3D EPI sequence was used to image a cohort of MS patients at 1-mm isotropic resolution at 3 T. Additionally, 3D EPI data of healthy subjects were acquired at 1-mm, 0.78-mm, and 0.65-mm isotropic resolution with varying echo train lengths (ETLs) and compared with a reference 3D GRE acquisition. RESULTS: The appearance of the susceptibility maps and the susceptibility values for segmented regions of interest were comparable between 3D EPI and 3D GRE acquisitions for both healthy and MS participants. Additionally, all lesions visible in the MS patients on the 3D GRE susceptibility maps were also visible on the 3D EPI susceptibility maps. The interplay among acquisition time, resolution, echo train length, and the effect of distortion on the calculated susceptibility maps was investigated. CONCLUSION: We demonstrate that the 3D EPI sequence is capable of rapidly acquiring submillimeter resolutions and providing high-quality, clinically relevant susceptibility maps.


Subject(s)
Brain , Echo-Planar Imaging , Imaging, Three-Dimensional , Multiple Sclerosis , Humans , Imaging, Three-Dimensional/methods , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Echo-Planar Imaging/methods , Adult , Male , Female , Algorithms , Middle Aged , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods
3.
Nat Methods ; 21(5): 804-808, 2024 May.
Article in English | MEDLINE | ID: mdl-38191935

ABSTRACT

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Subject(s)
Neuroimaging , Software , Neuroimaging/methods , Humans , User-Computer Interface , Reproducibility of Results , Brain/diagnostic imaging
4.
Hum Brain Mapp ; 44(15): 5095-5112, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37548414

ABSTRACT

The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.


Subject(s)
Brain Mapping , Brain , Echo-Planar Imaging , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Echo-Planar Imaging/methods , Artifacts
7.
Res Sq ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993557

ABSTRACT

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.

8.
Hum Brain Mapp ; 44(2): 710-726, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36189837

ABSTRACT

Functional magnetic resonance imaging (fMRI) using a blood-oxygenation-level-dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient-echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth-dependent (also called laminar or layer-specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular-Space-Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth-dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the "cortical vascular model" previously developed to predict layer-specific BOLD signal changes in human primary visual cortex to also predict a layer-specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus-evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth-dependent VASO profiles, whereas depth-dependent BOLD profiles showed a bias towards signal contributions from intracortical veins.


Subject(s)
Cerebrovascular Circulation , Primary Visual Cortex , Humans , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Brain/physiology , Brain Mapping/methods , Oxygen
9.
Hum Brain Mapp ; 44(3): 1209-1226, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36401844

ABSTRACT

Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction. In the light of the sensitivity of the phase of the MR signal to local changes in the field stemming from physiological processes, we have developed an unsupervised physiological noise correction method using the information carried in the phase and the magnitude of echo-planar imaging data. Our technique, Physiological Regressor Estimation from Phase and mAgnItude, sub-tR (PREPAIR) derives time series signals sampled at the slice TR from both phase and magnitude images. It allows physiological noise to be captured without aliasing, and efficiently removes other sources of signal fluctuations not related to physiology, prior to regressor estimation. We demonstrate that the physiological signal time courses identified with PREPAIR agree well with those from external devices and retrieve challenging cardiac dynamics. The removal of physiological noise was as effective as that achieved with the most used approach based on external recordings, RETROICOR. In comparison with widely used recording-free physiological noise correction tools-PESTICA and FIX, both performed in unsupervised mode-PREPAIR removed significantly more respiratory and cardiac noise than PESTICA, and achieved a larger increase in temporal signal-to-noise-ratio at both 3 and 7 T.


Subject(s)
Brain , Respiration , Humans , Brain/diagnostic imaging , Brain/physiology , Signal-To-Noise Ratio , Magnetic Resonance Imaging/methods , Echo-Planar Imaging , Artifacts , Brain Mapping/methods
10.
Neuroimage ; 264: 119733, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36375782

ABSTRACT

Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for advancing neuroscience and bridging the resolution gap with animal models. Despite the variety of MRI contrasts measured in recent years at the mesoscopic scale, in vivo quantitative imaging of T2* has not been performed. Here we provide a dataset containing empirical T2* measurements acquired at 0.35 × 0.35 × 0.35 mm3 voxel resolution using 7 Tesla MRI. To demonstrate unique features and high quality of this dataset, we generate flat map visualizations that reveal fine-scale cortical substructures such as layers and vessels, and we report quantitative depth-dependent T2* (as well as R2*) values in primary visual cortex and auditory cortex that are highly consistent across subjects. This dataset is freely available at https://doi.org/10.17605/OSF.IO/N5BJ7, and may prove useful for anatomical investigations of the human brain, as well as for improving our understanding of the basis of the T2*-weighted (f)MRI signal.


Subject(s)
Auditory Cortex , Neurosciences , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Brain/diagnostic imaging , Auditory Cortex/diagnostic imaging
11.
Elife ; 112022 04 29.
Article in English | MEDLINE | ID: mdl-35486089

ABSTRACT

The pial arterial vasculature of the human brain is the only blood supply to the neocortex, but quantitative data on the morphology and topology of these mesoscopic arteries (diameter 50-300 µm) remains scarce. Because it is commonly assumed that blood flow velocities in these vessels are prohibitively slow, non-invasive time-of-flight magnetic resonance angiography (TOF-MRA)-which is well suited to high 3D imaging resolutions-has not been applied to imaging the pial arteries. Here, we provide a theoretical framework that outlines how TOF-MRA can visualize small pial arteries in vivo, by employing extremely small voxels at the size of individual vessels. We then provide evidence for this theory by imaging the pial arteries at 140 µm isotropic resolution using a 7 Tesla (T) magnetic resonance imaging (MRI) scanner and prospective motion correction, and show that pial arteries one voxel width in diameter can be detected. We conclude that imaging pial arteries is not limited by slow blood flow, but instead by achievable image resolution. This study represents the first targeted, comprehensive account of imaging pial arteries in vivo in the human brain. This ultra-high-resolution angiography will enable the characterization of pial vascular anatomy across the brain to investigate patterns of blood supply and relationships between vascular and functional architecture.


Subject(s)
Brain , Magnetic Resonance Angiography , Brain/blood supply , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Prospective Studies
12.
Gigascience ; 10(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34414422

ABSTRACT

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

13.
Front Psychiatry ; 12: 680811, 2021.
Article in English | MEDLINE | ID: mdl-34149484

ABSTRACT

Psychiatry faces fundamental challenges with regard to mechanistically guided differential diagnosis, as well as prediction of clinical trajectories and treatment response of individual patients. This has motivated the genesis of two closely intertwined fields: (i) Translational Neuromodeling (TN), which develops "computational assays" for inferring patient-specific disease processes from neuroimaging, electrophysiological, and behavioral data; and (ii) Computational Psychiatry (CP), with the goal of incorporating computational assays into clinical decision making in everyday practice. In order to serve as objective and reliable tools for clinical routine, computational assays require end-to-end pipelines from raw data (input) to clinically useful information (output). While these are yet to be established in clinical practice, individual components of this general end-to-end pipeline are being developed and made openly available for community use. In this paper, we present the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) software package, an open-source collection of building blocks for computational assays in psychiatry. Collectively, the tools in TAPAS presently cover several important aspects of the desired end-to-end pipeline, including: (i) tailored experimental designs and optimization of measurement strategy prior to data acquisition, (ii) quality control during data acquisition, and (iii) artifact correction, statistical inference, and clinical application after data acquisition. Here, we review the different tools within TAPAS and illustrate how these may help provide a deeper understanding of neural and cognitive mechanisms of disease, with the ultimate goal of establishing automatized pipelines for predictions about individual patients. We hope that the openly available tools in TAPAS will contribute to the further development of TN/CP and facilitate the translation of advances in computational neuroscience into clinically relevant computational assays.

14.
Prog Neurobiol ; 207: 101936, 2021 12.
Article in English | MEDLINE | ID: mdl-33130229

ABSTRACT

This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.


Subject(s)
Functional Neuroimaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Functional Neuroimaging/methods , Humans , Magnetic Resonance Imaging/methods
15.
Neuropsychologia ; 141: 107433, 2020 04.
Article in English | MEDLINE | ID: mdl-32184100

ABSTRACT

Applying a weak electrical current to the cortex has the potential to modulate neural functioning and behaviour. The most common stimulation technique, transcranial direct current stimulation (tDCS), has been used for causal investigations of brain and cognitive functioning, and to treat psychiatric conditions such as depression. However, the efficacy of tDCS in modulating behaviour varies across individuals. Moreover, despite being associated with different neural effects, the two polarities of electrical stimulation - anodal and cathodal - can result in similar behavioural outcomes. Here we employed a previously replicated behavioural paradigm that has been associated with polarity non-specific disruption of training effects in a simple decision-making task. We then used the linear ballistic accumulator model to quantify latent components of the decision-making task. In addition, magnetic resonance imaging measures were acquired prior to tDCS sessions to quantify cortical morphology and local neurochemical concentrations. Both anodal and cathodal stimulation disrupted learning-related task improvement relative to sham (placebo) stimulation, but the two polarities of stimulation had distinct effects on latent task components. Whereas anodal stimulation tended to affect decision thresholds for the behavioural task, cathodal stimulation altered evidence accumulation rates. Moreover, performance variability with anodal stimulation was related to cortical thickness of the inferior frontal gyrus, whereas performance variability with cathodal stimulation was related to cortical thickness in the inferior precentral sulcus, as well as to prefrontal neurochemical excitability. Our findings demonstrate that both cortical morphology and local neurochemical balance are important determinants of individual differences in behavioural responses to electrical brain stimulation.


Subject(s)
Transcranial Direct Current Stimulation , Electric Stimulation , Humans , Individuality , Learning , Prefrontal Cortex/diagnostic imaging
16.
Neuroimage ; 208: 116465, 2020 03.
Article in English | MEDLINE | ID: mdl-31863915

ABSTRACT

Somatosensation is fundamental to our ability to sense our body and interact with the world. Our body is continuously sampling the environment using a variety of receptors tuned to different features, and this information is routed up to primary somatosensory cortex. Strikingly, the spatial organization of the peripheral receptors in the body are well maintained, with the resulting representation of the body in the brain being referred to as the somatosensory homunculus. Recent years have seen considerable advancements in the field of high-resolution fMRI, which have enabled an increasingly detailed examination of the organization and properties of this homunculus. Here we combined advanced imaging techniques at ultra-high field (7T) with a recently developed Bayesian population receptive field (pRF) modeling framework to examine pRF properties in primary somatosensory cortex. In each subject, vibrotactile stimulation of the fingertips (i.e., the peripheral mechanoreceptors) modulated the fMRI response along the post-central gyrus and these signals were used to estimate pRFs. We found the pRF center location estimates to be in accord with previous work as well as evidence of other properties in line with the underlying neurobiology. Specifically, as expected from the known properties of cortical magnification, we find a larger representation of the index finger compared to the other stimulated digits (middle, index, little). We also show evidence that the little finger is marked by the largest pRF sizes, and that pRF size increases from anterior to posterior regions of S1. The ability to estimate somatosensory pRFs in humans provides an unprecedented opportunity to examine the neural mechanisms underlying somatosensation and is critical for studying how the brain, body, and environment interact to inform perception and action.


Subject(s)
Brain Mapping , Fingers/physiology , Magnetic Resonance Imaging , Mechanoreceptors/physiology , Models, Theoretical , Somatosensory Cortex/physiology , Touch Perception/physiology , Adult , Bayes Theorem , Humans , Physical Stimulation , Somatosensory Cortex/diagnostic imaging , Vibration , Young Adult
17.
Cortex ; 115: 324-334, 2019 06.
Article in English | MEDLINE | ID: mdl-30903834

ABSTRACT

There is now considerable evidence that applying a small electrical current to the cerebral cortex can have wide ranging effects on cognition and performance, and may provide substantial benefit as a treatment for conditions such as depression. However, there is variability across subjects in the extent to which stimulation modulates behaviour, providing a challenge for the development of applications. Here, we employed an individual differences approach to test if baseline concentrations of the neurochemicals GABA and glutamate are associated with an individual's response to transcranial direct current stimulation (tDCS). Using a previously replicated response selection training paradigm, we applied tDCS to the left prefrontal cortex part-way through the learning of a six-alternative-forced-choice task. Across three sessions, subjects received anodal, cathodal, or sham stimulation. Pre-tDCS baseline measures of GABA and glutamate, acquired using magnetic resonance spectroscopy (MRS), correlated with the extent to which stimulation modulated behaviour. Specifically, relative concentrations of GABA and glutamate (used as an index of neurochemical excitability) in the prefrontal cortex were associated with the degree to which active stimulation disrupted response selection training. This work represents an important step forward in developing models to predict stimulation efficacy, and provides a unique insight into how trait-based properties of the targeted cortex interact with stimulation.


Subject(s)
Glutamic Acid/metabolism , Individuality , Motor Cortex/physiology , Transcranial Direct Current Stimulation , gamma-Aminobutyric Acid/metabolism , Adult , Attention/physiology , Cognition/physiology , Female , Humans , Inhibition, Psychological , Magnetic Resonance Spectroscopy , Male , Motor Cortex/metabolism , Neuropsychological Tests , Young Adult
18.
Neuroimage ; 188: 807-820, 2019 03.
Article in English | MEDLINE | ID: mdl-30735828

ABSTRACT

Recent advances in parallel imaging and simultaneous multi-slice techniques have permitted whole-brain fMRI acquisitions at sub-second sampling intervals, without significantly sacrificing the spatial coverage and resolution. Apart from probing brain function at finer temporal scales, faster sampling rates may potentially lead to enhanced functional sensitivity, owing possibly to both cleaner neural representations (due to less aliased physiological noise) and additional statistical benefits (due to more degrees of freedom for a fixed scan duration). Accompanying these intriguing aspects of fast acquisitions, however, confusion has also arisen regarding (1) how to preprocess/analyze these fast fMRI data, and (2) what exactly is the extent of benefits with fast acquisitions, i.e., how fast is fast enough for a specific research aim? The first question is motivated by the altered spectral distribution and noise characteristics at short sampling intervals, while the second question seeks to reconcile the complicated trade-offs between the functional contrast-to-noise ratio and the effective degrees of freedom. Although there have been recent efforts to empirically approach different aspects of these two questions, in this work we discuss, from a theoretical perspective accompanied by some illustrative, proof-of-concept experimental in vivo human fMRI data, a few considerations that are rarely mentioned, yet are important for both preprocessing and optimizing statistical inferences for studies that employ acquisitions with sub-second sampling intervals. Several summary recommendations include concerns regarding advisability of relying on low-pass filtering to de-noise physiological contributions, employment of statistical models with sufficient complexity to account for the substantially increased serial correlation, and cautions regarding using rapid sampling to enhance functional sensitivity given that different analysis models may associate with distinct trade-offs between contrast-to-noise ratios and the effective degrees of freedom. As an example, we demonstrate that as TR shortens, the intrinsic differences in how noise is accommodated in general linear models and Pearson correlation analyses (assuming Gaussian distributed stochastic signals and noise) can result in quite different outcomes, either gaining or losing statistical power.


Subject(s)
Brain/diagnostic imaging , Functional Neuroimaging/methods , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Statistical , Connectome/methods , Connectome/standards , Functional Neuroimaging/standards , Humans , Image Interpretation, Computer-Assisted/standards , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Research Design , Time Factors
20.
Neuroimage ; 166: 152-166, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29066396

ABSTRACT

When performing statistical analysis of single-subject fMRI data, serial correlations need to be taken into account to allow for valid inference. Otherwise, the variability in the parameter estimates might be under-estimated resulting in increased false-positive rates. Serial correlations in fMRI data are commonly characterized in terms of a first-order autoregressive (AR) process and then removed via pre-whitening. The required noise model for the pre-whitening depends on a number of parameters, particularly the repetition time (TR). Here we investigate how the sub-second temporal resolution provided by simultaneous multislice (SMS) imaging changes the noise structure in fMRI time series. We fit a higher-order AR model and then estimate the optimal AR model order for a sequence with a TR of less than 600 ms providing whole brain coverage. We show that physiological noise modelling successfully reduces the required AR model order, but remaining serial correlations necessitate an advanced noise model. We conclude that commonly used noise models, such as the AR(1) model, are inadequate for modelling serial correlations in fMRI using sub-second TRs. Rather, physiological noise modelling in combination with advanced pre-whitening schemes enable valid inference in single-subject analysis using fast fMRI sequences.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Functional Neuroimaging/methods , Hemodynamics/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Adult , Female , Functional Neuroimaging/standards , Humans , Magnetic Resonance Imaging/standards , Male , Psychomotor Performance/physiology , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL