Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Tumour Biol ; 44(1): 85-105, 2022.
Article in English | MEDLINE | ID: mdl-35811548

ABSTRACT

INTRODUCTION: Prolactinomas are the most frequent pituitary tumor subtype. Despite most of them respond to medical treatment, a proportion are resistant and become a challenge in clinical management. Wnt/ß-Catenin pathway has been implicated in several cancers including pituitary tumors and other sellar region malignancies. Interestingly, Wnt/ß-Catenin inhibition augments the cytotoxicity of the chemotherapeutic agent Temozolomide (TMZ) in different cancers. TMZ is now being implemented as rescue therapy for aggressive pituitary adenoma treatment. However, the molecular mechanisms associated with TMZ action in pituitary tumors remain unclear. OBJECTIVES: Our aims in the present study were to evaluate differential ß-Catenin expression in human resistant prolactinomas and Wnt/ß-Catenin signaling activation and involvement in Prolactin (PRL) secreting experimental models treated with TMZ. RESULTS: We first evaluated by immunohistochemistry ß-Catenin localization in human resistant prolactinomas in which we demonstrated reduced membrane ß-Catenin in prolactinoma cells compared to normal pituitaries, independently of the Ki-67 proliferation indexes. In turn, in vivo 15 mg/kg of orally administered TMZ markedly reduced PRL production and increased prolactinoma cell apoptosis in mice bearing xenografted prolactinomas. Intratumoral ß-Catenin strongly correlated with Prl and Cyclin D1, and importantly, TMZ downregulated both ß-Catenin and Cyclin D1, supporting their significance in prolactinoma growth and as candidates of therapeutic targets. When tested in vitro, TMZ directly reduced MMQ cell viability, increased apoptosis and produced G2/M cell cycle arrest. Remarkably, ß-Catenin activation and VEGF secretion were inhibited by TMZ in vitro. CONCLUSIONS: We concluded that dopamine resistant prolactinomas undergo a ß-Catenin relocalization in relation to normal pituitaries and that TMZ restrains experimental prolactinoma tumorigenicity by reducing PRL production and ß-Catenin activation. Together, our findings contribute to the understanding of Wnt/ß-Catenin implication in prolactinoma maintenance and TMZ therapy, opening the opportunity of new treatment strategies for aggressive and resistant pituitary tumors.


Subject(s)
Pituitary Neoplasms , Prolactinoma , Animals , Cyclin D1 , Humans , Mice , Models, Theoretical , Pituitary Neoplasms/pathology , Prolactin/metabolism , Prolactin/therapeutic use , Prolactinoma/drug therapy , Prolactinoma/metabolism , Prolactinoma/pathology , Temozolomide/pharmacology , Temozolomide/therapeutic use , beta Catenin
2.
Sci Rep ; 9(1): 8899, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222104

ABSTRACT

The development of the mammary gland of cows during pre-weaning and puberty will condition its future productive capacity and warrants special study. In this respect, Notch signaling regulates tissue development and fate by modifying cell proliferation and differentiation and has been involved in stem cell maintenance, but has not been extensively studied in the developing mammary glands in cows. We therefore investigated Notch receptor expression and localization, as well as the expression of Notch ligands and target genes in the mammary gland of Holstein heifers in pre- and post-pubertal stages. Notch receptors 1 to 4 were detected by immunohistochemistry in the parenchyma and stroma of the developing gland. The subcellular localization of the four receptors was predominantly cytoplasmic except for NOTCH4, which was mostly nuclear. The membrane and the active intracellular domains of NOTCH paralogues were identified by western blot. NOTCH1 and NOTCH2 active domains increased during pubertal stages while NOTCH3 and NOTCH4 active domains decreased, suggesting strikingly different involvement of NOTCH paralogues in bovine mammary gland development and differentiation. The mRNA expression levels of the target genes HEY1 and HEY2 increased during peri-puberty whereas no variation of HES1 mRNA levels was observed. The mRNA levels of the Notch ligands JAGGED1 and DELTA1 also increased gradually during development. In conclusion, Notch signaling system dynamically varies throughout the development of the mammary gland during puberty pointing to specific time involvement of each component.


Subject(s)
Mammary Glands, Animal/growth & development , Receptors, Notch/physiology , Sexual Maturation , Animals , Cattle , Female , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL