Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 336: 199221, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37704176

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response. By combining miniaturized differential scanning fluorimetry with microscale thermophoresis, we found that the 100-year-old drug Suramin interacts with SARS-CoV-2 N-terminal domain (NTD) and C-terminal domain (CTD), thereby inhibiting their single-stranded RNA (ssRNA) binding function with low-micromolar Kd and IC50 values. Molecular docking suggests that Suramin interacts with basic NTD cleft and CTD dimer interface groove, highlighting three potentially druggable ssRNA binding sites. Electron microscopy shows that Suramin inhibits the formation in vitro of RNP complex-like condensates by SARS-CoV-2 N with a synthetic ssRNA. In a dose-dependent manner, Suramin also reduced SARS-CoV-2-induced cytopathic effect on Vero E6 and Calu-3 cells, partially reverting the SARS-CoV-2 N-inhibited IFN-I production in 293T cells. Our findings indicate that Suramin inhibits SARS-CoV-2 replication by hampering viral genome packaging, thereby representing a starting model for design of new COVID-19 antivirals.

2.
Comput Struct Biotechnol J ; 19: 6355-6365, 2021.
Article in English | MEDLINE | ID: mdl-34938411

ABSTRACT

Gelsolin comprises six homologous domains, named G1 to G6. Single point substitutions in this protein are responsible for AGel amyloidosis, a hereditary disease causing progressive corneal lattice dystrophy, cutis laxa, and polyneuropathy. Although several different amyloidogenic variants of gelsolin have been identified, only the most common mutants present in the G2 domain have been thoroughly characterized, leading to clarification of the functional mechanism. The molecular events underlying the pathological aggregation of 3 recently identified mutations, namely A551P, E553K and M517R, all localized at the interface between G4 and G5, are here explored for the first time. Structural studies point to destabilization of the interface between G4 and G5 due to three structural determinants: ß-strand breaking, steric hindrance and/or charge repulsion, all implying impairment of interdomain contacts. Such rearrangements decrease the temperature and pressure stability of gelsolin but do not alter its susceptibility to furin cleavage, the first event in the canonical aggregation pathway. These variants also have a greater tendency to aggregate in the unproteolysed forms and exhibit higher proteotoxicity in a C. elegans-based assay. Our data suggest that aggregation of G4G5 variants follows an alternative, likely proteolysis-independent, pathway.

SELECTION OF CITATIONS
SEARCH DETAIL