Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Environ Int ; 168: 107476, 2022 Oct.
Article En | MEDLINE | ID: mdl-36067553

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

2.
Article En | MEDLINE | ID: mdl-35627658

Regulating chemical mixtures is a complex scientific and policy task. The aim of this study was to investigate typical mixtures and their potential risks based on internal exposure levels in the European population. Based on human biomonitoring (HBM) data made available via the HBM4EU project, we derived generic mixtures representative of a median (P50) and a worst-case scenario (P95) for adults and children. We performed a mixture risk assessment based on HBM concentrations, health-based guidance values (HBGVs) as internal thresholds of concern, and the conservative assumption of concentration addition applied across different toxicological endpoints. Maximum cumulative ratios (MCRs) were calculated to characterize the mixture risk. The mixtures comprise 136 biomarkers for adults and 84 for children, although concentration levels could be quantified only for a fraction of these. Due to limited availability of HBGVs, the mixture risk was assessed for a subset of 20 substance-biomarker pairs for adults and 17 for children. The mixture hazard index ranged from 2.8 (P50, children) to 9.2 (P95, adults). Six to seven substances contributed to over 95% of the total risk. MCR values ranged between 2.6 and 5.5, which is in a similar range as in previous studies based on human external exposures assessments. The limited coverage of substances included in the calculations and the application of a hazard index across toxicological endpoints argue for caution in the interpretation of the results. Nonetheless the analyses of MCR and MAFceiling can help inform a possible mixture assessment factor (MAF) applicable to single substance risk assessment to account for exposure to unintentional mixtures.


Biological Monitoring , Adult , Child , Humans , Risk Assessment/methods
3.
Reprod Toxicol ; 105: 101-119, 2021 10.
Article En | MEDLINE | ID: mdl-34455033

Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.


Biological Assay , Models, Theoretical , Neurotoxicity Syndromes , Astrocytes/drug effects , Benzhydryl Compounds/toxicity , Brain-Derived Neurotrophic Factor/metabolism , Cell Differentiation , Cell Survival/drug effects , Cells, Cultured , Chlorpyrifos/toxicity , Ethanol/toxicity , Halogenated Diphenyl Ethers/toxicity , Humans , Induced Pluripotent Stem Cells/cytology , Lead/toxicity , Methylmercury Compounds/toxicity , Neural Stem Cells/cytology , Neurons/drug effects , Oxazoles/toxicity , Phenols/toxicity , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Valproic Acid/toxicity
4.
Arch Toxicol ; 95(6): 1867-1897, 2021 06.
Article En | MEDLINE | ID: mdl-33851225

The EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


Animal Testing Alternatives/legislation & jurisprudence , Cosmetics/legislation & jurisprudence , Toxicity Tests/methods , Animal Testing Alternatives/methods , Animals , Cosmetics/toxicity , European Union , Humans , International Cooperation , Risk Assessment/legislation & jurisprudence , Risk Assessment/methods
5.
Environ Int ; 146: 106206, 2021 01.
Article En | MEDLINE | ID: mdl-33120228

BACKGROUND: Several reviews of synergisms and antagonisms in chemical mixtures have concluded that synergisms are relatively rare. However, these reviews focused on mixtures composed of specific groups of chemicals, such as pesticides or metals and on toxicity endpoints mostly relevant to ecotoxicology. Doubts remain whether these findings can be generalised. A systematic review not restricted to specific chemical mixtures and including mammalian and human toxicity endpoints is missing. OBJECTIVES: We conducted a systematic review and quantitative reappraisal of 10 years' of experimental mixture studies to investigate the frequency and reliability of evaluations of mixture effects as synergistic or antagonistic. Unlike previous reviews, we did not limit our efforts to certain groups of chemicals or specific toxicity outcomes and covered mixture studies relevant to ecotoxicology and human/mammalian toxicology published between 2007 and 2017. DATA SOURCES, ELIGIBILITY CRITERIA: We undertook searches for peer-reviewed articles in PubMed, Web of Science, Scopus, GreenFile, ScienceDirect and Toxline and included studies of controlled exposures of environmental chemical pollutants, defined as unintentional exposures leading to unintended effects. Studies with viruses, prions or therapeutic agents were excluded, as were records with missing details on chemicals' identities, toxicities, doses, or concentrations. STUDY APPRAISAL AND SYNTHESIS METHODS: To examine the internal validity of studies we developed a risk-of-bias tool tailored to mixture toxicology. For a subset of 388 entries that claimed synergisms or antagonisms, we conducted a quantitative reappraisal of authors' evaluations by deriving ratios of predicted and observed effective mixture doses (concentrations). RESULTS: Our searches produced an inventory of 1220 mixture experiments which we subjected to subgroup analyses. Approximately two thirds of studies did not incorporate more than 2 components. Most experiments relied on low-cost assays with readily quantifiable endpoints. Important toxicity outcomes of relevance for human risk assessment (e.g. carcinogenicity, genotoxicity, reproductive toxicity, immunotoxicity, neurotoxicity) were rarely addressed. The proportion of studies that declared additivity, synergism or antagonisms was approximately equal (one quarter each); the remaining quarter arrived at different evaluations. About half of the 1220 entries were rated as "definitely" or "probably" low risk of bias. Strikingly, relatively few claims of synergistic or antagonistic effects stood up to scrutiny in terms of deviations from expected additivity that exceed the boundaries of acceptable between-study variability. In most cases, the observed mixture doses were not more than two-fold higher or lower than the predicted additive doses. Twenty percent of the entries (N = 78) reported synergisms in excess of that degree of deviation. Our efforts of pinpointing specific factors that predispose to synergistic interactions confirmed previous concerns about the synergistic potential of combinations of triazine, azole and pyrethroid pesticides at environmentally relevant doses. New evidence of synergisms with endocrine disrupting chemicals and metal compounds such as chromium (VI) and nickel in combination with cadmium has emerged. CONCLUSIONS, LIMITATIONS AND IMPLICATIONS: These specific cases of synergisms apart, our results confirm the utility of default application of the dose (concentration) addition concept for predictive assessments of simultaneous exposures to multiple chemicals. However, this strategy must be complemented by an awareness of the synergistic potential of specific classes of chemicals. Our conclusions only apply to the chemical space captured in published mixture studies which is biased towards relatively well-researched chemicals. SYSTEMATIC REVIEW REGISTRATION NUMBER: The final protocol was published on the open-access repository Zenodo and attributed the following digital object identifier, doi: https://doi.org//10.5281/zenodo.1319759 (https://zenodo.org/record/1319759#.XXIzdy7dsqM).


Endocrine Disruptors , Environmental Pollutants , Pesticides , Animals , Drug Interactions , Environmental Pollutants/toxicity , Humans , Pesticides/toxicity , Reproducibility of Results
6.
Environ Int ; 143: 105978, 2020 10.
Article En | MEDLINE | ID: mdl-32763630

Human biomonitoring (HBM) data can provide insight into co-exposure patterns resulting from exposure to multiple chemicals from various sources and over time. Therefore, such data are particularly valuable for assessing potential risks from combined exposure to multiple chemicals. One way to interpret HBM data is establishing safe levels in blood or urine, called Biomonitoring Equivalents (BE) or HBM health based guidance values (HBM-HBGV). These can be derived by converting established external reference values, such as tolerable daily intake (TDI) values. HBM-HBGV or BE values are so far agreed only for a very limited number of chemicals. These values can be established using physiologically based kinetic (PBK) modelling, usually requiring substance specific models and the collection of many input parameters which are often not available or difficult to find in the literature. The aim of this study was to investigate the suitability and limitations of generic PBK models in deriving BE values for several compounds with a view to facilitating the use of HBM data in the assessment of chemical mixtures at a screening level. The focus was on testing the methodology with two generic models, the IndusChemFate tool and High-Throughput Toxicokinetics package, for two different classes of compounds, phenols and phthalates. HBM data on Danish children and on Norwegian mothers and children were used to evaluate the quality of the predictions and to illustrate, by means of a case study, the overall approach of applying PBK models to chemical classes with HBM data in the context of chemical mixture risk assessment. Application of PBK models provides a better understanding and interpretation of HBM data. However, the study shows that establishing safety threshold levels in urine is a difficult and complex task. The approach might be more straightforward for more persistent chemicals that are analysed as parent compounds in blood but high uncertainties have to be considered around simulated metabolite concentrations in urine. Refining the models may reduce these uncertainties and improve predictions. Based on the experience gained with this study, the performance of the models for other chemicals could be investigated, to improve the accuracy of the simulations.


Biological Monitoring , Environmental Monitoring , Child , Humans , No-Observed-Adverse-Effect Level , Reference Values , Risk Assessment
7.
Int J Hyg Environ Health ; 227: 113515, 2020 06.
Article En | MEDLINE | ID: mdl-32305857

BACKGROUND: The European Commission has developed and put in place the Information Platform for Chemical Monitoring Data (IPCHEM), to promote a more coherent approach to the generation, collection, storage and use of chemical monitoring data in relation to humans and the environment. OBJECTIVES: This paper describes the specific development of the IPCHEM thematic module "Products and Indoor Air Data" which aims to facilitate the retrieval of and access to existing and future chemical monitoring data sources stemming from e.g. national monitoring programs of EU Member States and EU funded projects. The current development focusses on harmonised data and metadata templates and code lists related to indoor air monitoring data. METHODS: The extension and revision of the IPCHEM metadata and data collection templates for indoor air monitoring data was based on harmonisation and standardisation efforts on the development of indoor air monitoring protocols and guidelines for monitoring indoor pollution attributed to chemical and biological stressors, which were undertaken by European Commission Services, EU funded projects and research networks and EU Members States. RESULTS: A list of ten candidate data collections for potential integration were identified and prioritised. A different level of relevance was attributed to the enhanced metadata and data elements (mandatory, recommended, optional) to allow for their flexible applicability by end users. These elements should be provided for reaching the required quality in the data documentation as well as for ensuring a correct data traceability and interpretation. CONCLUSIONS: The proposed enhanced metadata and data models of the IPCHEM thematic module "Products and Indoor Air Data" can be used by data providers when planning and setting up their future indoor air monitoring campaigns, or to further mapping and harmonising data elements of their existing data collections for further integration into IPCHEM. This will boost the effective implementation of a coordinated approach for collecting, accessing and sharing existing and future indoor air monitoring data in support of policy making.


Air Pollution, Indoor/analysis , Environmental Monitoring , Europe , Metadata , Models, Theoretical
8.
Environ Health ; 19(1): 23, 2020 02 24.
Article En | MEDLINE | ID: mdl-32093744

BACKGROUND: In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS: HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS: Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS: Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.


Adverse Outcome Pathways , Environmental Pollutants/toxicity , Neurotoxicity Syndromes/etiology , Neurotoxins/toxicity , Endocrine Disruptors/toxicity , Humans , Induced Pluripotent Stem Cells/drug effects , Metals, Heavy/toxicity , Neural Stem Cells/drug effects , Pesticides/toxicity , Polychlorinated Biphenyls/toxicity , Risk Assessment , Toxicity Tests
9.
Crit Rev Toxicol ; 49(2): 174-189, 2019 02.
Article En | MEDLINE | ID: mdl-30931677

This paper summarizes current challenges, the potential use of novel scientific methodologies, and ways forward in the risk assessment and risk management of mixtures. Generally, methodologies to address mixtures have been agreed; however, there are still several data and methodological gaps to be addressed. New approach methodologies can support the filling of knowledge gaps on the toxicity and mode(s) of action of individual chemicals. (Bio)Monitoring, modeling, and better data sharing will support the derivation of more realistic co-exposure scenarios. As knowledge and data gaps often hamper an in-depth assessment of specific chemical mixtures, the option of taking account of possible mixture effects in single substance risk assessments is briefly discussed. To allow risk managers to take informed decisions, transparent documentation of assumptions and related uncertainties is recommended indicating the potential impact on the assessment. Considering the large number of possible combinations of chemicals in mixtures, prioritization is needed, so that actions first address mixtures of highest concern and chemicals that drive the mixture risk. As chemicals with different applications and regulated separately might lead to similar toxicological effects, it is important to consider chemical mixtures across legislative sectors.


Environmental Exposure , Environmental Policy , Hazardous Substances , Humans , Risk Assessment
10.
Environ Health Perspect ; 126(8): 84502, 2018 08.
Article En | MEDLINE | ID: mdl-30235423

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.


Environmental Exposure/prevention & control , Environmental Pollutants , Environmental Pollution/prevention & control , Fluorocarbons , Environmental Monitoring , Humans
11.
Environ Int ; 120: 544-562, 2018 11.
Article En | MEDLINE | ID: mdl-30170309

Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.


Complex Mixtures , Environmental Exposure , Hazardous Substances , Risk Assessment , Animals , European Union , Humans , Research
12.
Toxicol Appl Pharmacol ; 354: 7-18, 2018 09 01.
Article En | MEDLINE | ID: mdl-29476865

Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.


Nervous System/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Neurotoxicity Syndromes/etiology , Toxicity Tests , Toxicology/methods , Animal Testing Alternatives , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Nervous System/embryology , Nervous System/metabolism , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/embryology , Neurotoxicity Syndromes/metabolism , Policy Making , Quantitative Structure-Activity Relationship , Risk Assessment , Toxicology/legislation & jurisprudence
13.
Environ Toxicol Chem ; 36(12): 3450-3462, 2017 12.
Article En | MEDLINE | ID: mdl-28618056

The scientific consensus model USEtox® is recommended by the European Commission as the reference model to characterize life cycle chemical emissions in terms of their potential human toxicity and freshwater aquatic ecotoxicity impacts in the context of the International Reference Life Cycle Data System Handbook and the Environmental Footprint pilot phase looking at products (PEF) and organizations (OEF). Consequently, this model has been systematically used within the PEF/OEF pilot phase by 25 European Union industry sectors, which manufacture a wide variety of consumer products. This testing phase has raised some questions regarding the derivation of and the data used for the chemical-specific freshwater ecotoxicity effect factor in USEtox. For calculating the potential freshwater aquatic ecotoxicity impacts, USEtox bases the effect factor on the chronic hazard concentration (HC50) value for a chemical calculated as the arithmetic mean of all logarithmized geometric means of species-specific chronic median lethal (or effect) concentrations (L[E]C50). We investigated the dependency of the USEtox effect factor on the selection of ecotoxicological data source and toxicological endpoints, and we found that both influence the ecotoxicity ranking of chemicals and may hence influence the conclusions of a PEF/OEF study. We furthermore compared the average measure (HC50) with other types of ecotoxicity effect indicators, such as the lowest species EC50 or no-observable-effect concentration, frequently used in regulatory risk assessment, and demonstrated how they may also influence the ecotoxicity ranking of chemicals. We acknowledge that these indicators represent different aspects of a chemical's ecotoxicity potential and discuss their pros and cons for a comparative chemical assessment as performed in life cycle assessment and in particular within the PEF/OEF context. Environ Toxicol Chem 2017;36:3450-3462. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Ecotoxicology/methods , Environmental Pollutants/analysis , Fresh Water/chemistry , Hazardous Substances/analysis , Databases, Factual , Environmental Pollutants/toxicity , Hazardous Substances/toxicity , Humans , Models, Theoretical , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Environ Int ; 99: 97-106, 2017 Feb.
Article En | MEDLINE | ID: mdl-27939949

The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.


Environmental Exposure , Environmental Pollutants/toxicity , Animals , Humans , Risk Assessment
15.
Regul Toxicol Pharmacol ; 80: 321-34, 2016 Oct.
Article En | MEDLINE | ID: mdl-27211294

This paper reviews regulatory requirements and recent case studies to illustrate how the risk assessment (RA) of chemical mixtures is conducted, considering both the effects on human health and on the environment. A broad range of chemicals, regulations and RA methodologies are covered, in order to identify mixtures of concern, gaps in the regulatory framework, data needs, and further work to be carried out. Also the current and potential future use of novel tools (Adverse Outcome Pathways, in silico tools, toxicokinetic modelling, etc.) in the RA of combined effects were reviewed. The assumptions made in the RA, predictive model specifications and the choice of toxic reference values can greatly influence the assessment outcome, and should therefore be specifically justified. Novel tools could support mixture RA mainly by providing a better understanding of the underlying mechanisms of combined effects. Nevertheless, their use is currently limited because of a lack of guidance, data, and expertise. More guidance is needed to facilitate their application. As far as the authors are aware, no prospective RA concerning chemicals related to various regulatory sectors has been performed to date, even though numerous chemicals are registered under several regulatory frameworks.


Complex Mixtures/adverse effects , Cosmetics/adverse effects , Government Regulation , Hazardous Substances/adverse effects , Public Policy/legislation & jurisprudence , Public Policy/trends , Toxicity Tests , Water Pollutants, Chemical/adverse effects , Animals , Consumer Product Safety/legislation & jurisprudence , Dose-Response Relationship, Drug , Environmental Policy/legislation & jurisprudence , Environmental Policy/trends , Health Policy/legislation & jurisprudence , Health Policy/trends , Humans , Policy Making , Risk Assessment
16.
Sci Total Environ ; 415: 31-8, 2012 Jan 15.
Article En | MEDLINE | ID: mdl-21733564

General protection goals for the environmental risk assessment (ERA) of plant protection products are stated in European legislation but specific protection goals (SPGs) are often not precisely defined. These are however crucial for designing appropriate risk assessment schemes. The process followed by the Panel on Plant Protection Products and their Residues (PPR) of the European Food Safety Authority (EFSA) as well as examples of resulting SPGs obtained so far for environmental risk assessment (ERA) of pesticides is presented. The ecosystem services approach was used as an overarching concept for the development of SPGs, which will likely facilitate communication with stakeholders in general and risk managers in particular. It is proposed to develop SPG options for 7 key drivers for ecosystem services (microbes, algae, non target plants (aquatic and terrestrial), aquatic invertebrates, terrestrial non target arthropods including honeybees, terrestrial non-arthropod invertebrates, and vertebrates), covering the ecosystem services that could potentially be affected by the use of pesticides. These SPGs need to be defined in 6 dimensions: biological entity, attribute, magnitude, temporal and geographical scale of the effect, and the degree of certainty that the specified level of effect will not be exceeded. In general, to ensure ecosystem services, taxa representative for the key drivers identified need to be protected at the population level. However, for some vertebrates and species that have a protection status in legislation, protection may be at the individual level. To protect the provisioning and supporting services provided by microbes it may be sufficient to protect them at the functional group level. To protect biodiversity impacts need to be assessed at least at the scale of the watershed/landscape.


Ecosystem , Environmental Monitoring/methods , Environmental Pollutants/analysis , Pesticides/analysis , Conservation of Natural Resources , Risk Assessment
17.
PLoS One ; 6(11): e26985, 2011.
Article En | MEDLINE | ID: mdl-22073232

Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment.


Benzo(a)pyrene/toxicity , Diatoms/drug effects , Transcriptome , Water Pollutants, Chemical/toxicity , Base Sequence , DNA Primers , Diatoms/genetics , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
18.
Aquat Toxicol ; 101(1): 244-53, 2011 Jan 17.
Article En | MEDLINE | ID: mdl-21087797

Marine diatoms have a key role in the global carbon fixation and therefore in the ecosystem. We used Thalassiosira pseudonana as a model organism to assess the effects of exposure to environmental pollutants at the gene expression level. Diatoms were exposed to polycyclic aromatic hydrocarbons mixture (PAH) from surface sediments collected at a highly PAH contaminated area of the Mediterranean Sea (Genoa, Italy), due to intense industrial and harbor activities. The gene expression data for exposure to the sediment-derived PAH mixture was compared with gene expression data for in vitro exposure to specific polycyclic aromatic hydrocarbons. The data shows that genes involved in stress response, silica uptake, and metabolism were regulated both upon exposure to the sediment-derived PAH mixture and to the single component. Complementary monitoring of silica in the diatom cultures provide further evidence of a reduced cellular uptake of silica as an end-point for benzo[a]pyrene exposure that could be linked with the reduced gene and protein expression of the silicon transporter protein. However some genes showed differences in regulation indicating that mixtures of structurally related chemical compounds can elicit a slightly different gene expression response compared to that of a single component. The paper provides indications on the specific pathways affected by PAH exposure and shows that selected genes (silicon transporter, and silaffin 3) involved in silica uptake and metabolism could be suitable molecular biomarkers of exposure to PAHs.


Diatoms/drug effects , Gene Expression Regulation/drug effects , Geologic Sediments/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Amino Acid Sequence , Benzo(a)pyrene/toxicity , Blotting, Western , DNA Primers/genetics , Diatoms/genetics , Diatoms/growth & development , Genetic Markers/drug effects , Genetic Markers/genetics , Italy , Mediterranean Sea , Peptides/genetics , Polycyclic Aromatic Hydrocarbons/analysis , Polymerase Chain Reaction , Sequence Analysis, DNA , Silicon Dioxide/metabolism , Silicon Dioxide/pharmacokinetics , Tandem Mass Spectrometry
19.
BMC Pharmacol ; 8: 8, 2008 May 30.
Article En | MEDLINE | ID: mdl-18513395

BACKGROUND: A broad spectrum of cytotoxicity assays is currently used in the fields of (eco)toxicology and pharmacology. To choose an appropriate assay, different parameters like test compounds, detection mechanism, specificity, and sensitivity have to be considered. Furthermore, tissue or cell line can influence test performance. For zebrafish (Danio rerio), as emerging model organism, cell lines are now increasingly used, but few studies examined cytotoxicity in these cell systems. Therefore, we compared four cytotoxicity assays in the zebrafish liver cell line, ZFL, to test four differently acting model compounds. The tests comprised two colorimetric assays (MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity) and two fluorometric assays (alamarBlue(R) using resazurin, and CFDA-AM based on 5-carboxyfluorescein diacetate acetoxymethyl ester). Model compounds were the pharmaceutical Tamoxifen, its metabolite 4-Hydroxy-Tamoxifen, the fungicide Flusilazole and the polycyclic aromatic hydrocarbon Benzo[a]pyrene. RESULTS: All four assays performed well in the ZFL cells and led to reproducible dose-response curves for all test compounds. Effective concentrations causing 10% or 50% loss of cell viability (EC10 and EC50 values) varied by a maximum factor of 7.0 for the EC10 values and a maximum factor of 1.8 for the EC50 values. The EC values were not statistically different between the four assays, which is due to the assessed unspecific effects of the compounds. However, most often, the MTT assay and LDH assay showed the highest and lowest EC values, respectively. Nevertheless, the LDH assay showed the highest intra- and inter-assay variabilities and the lowest signal-to-noise ratios. In contrast to MTT, the other three assays have the advantage of being non-destructive, easy to handle, and less time consuming. Furthermore, AB and CFDA-AM can be combined on the same set of cells without damaging the cells, allowing later on their use for the investigation of other endpoints. CONCLUSION: We recommend the alamarBlue and CFDA-AM assays for cytotoxicity assessment in ZFL cells, which can be applied either singly or combined.


Hepatocytes/chemistry , Hepatocytes/cytology , Toxicity Tests/methods , Toxicity Tests/standards , Zebrafish , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Colorimetry/methods , Colorimetry/standards , Dose-Response Relationship, Drug , Fluorometry/methods , Fluorometry/standards , Hepatocytes/drug effects , Tamoxifen/toxicity
20.
Aquat Toxicol ; 86(2): 197-204, 2008 Jan 31.
Article En | MEDLINE | ID: mdl-18063143

Copper is known to pose a serious threat to aquatic organisms. However, the mechanisms of its toxicity still remain unclear. Cu is known to exert its toxicity partly due to the formation of reactive oxygen species (ROS). The purpose of this work was therefore to link the exposure to copper at pH 6 and 7 to cellular formation of ROS and effects like cell viability and genotoxicity using the rainbow trout gill cell line RTgill-W1. To relate effects to bioavailable copper, free Cu(2+) concentrations in the medium were calculated using the programm ChemEQL 3.0. 2',7'-Dichlorodihydrofluorescein-diacetate (H(2)DCF-DA) was used as cell-permeant indicator of ROS formation. Cell viability was assessed using the fluorogenic probe 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM). DNA strand breaks were assessed using the comet assay, and lipid peroxidation was investigated using the thiobarbituric acid-reactive substances assay (TBARS). Copper treatment resulted in a dose-dependent elevation in cytotoxicity and formation of cellular ROS. Cell viability was significantly reduced at total copper (Cu(T)) concentrations of 5 microM (corresponding to a free Cu(2+) of 0.11 microM at pH 7) and higher, resulting in an EC(50) of Cu(T)=29.2 microM (Cu(2+)=0.63 microM, pH 7). Neither an impairment concerning the viability of control cells due to growth at pH 6 was observed nor significant differences for cytotoxicity in cells exposed to the same nominal Cu(T) concentrations at pH 6 compared to pH 7. Cellular ROS concentrations increased significantly and decreased with loss of cell viability. After normalizing ROS formation to cell viability, ROS induction up to 25-35-fold compared to the control was detected, but mainly for rather high concentrations (Cu(T) > or = 100 microM; Cu(2+) > or = 2.2 microM, pH 7). ROS formation rates were slightly higher when cells were exposed to Cu at pH 6 compared to pH 7, correlating with the higher free Cu(2+) concentrations. A significant induction of DNA strand breaks was noted at Cu(T) of 1 and 2.5 microM with greater effects at pH 6 due to higher free Cu(2+) concentrations than at pH 7. No effects on lipid peroxidation were observed. These results lead to the hypothesis that copper-induced loss in viability and genotoxicity in trout gill cells are partially triggered by the generation of ROS and related to the free Cu(2+).


Copper Sulfate/toxicity , Oncorhynchus mykiss , Oxidative Stress , Water Pollutants, Chemical/toxicity , Animals , Biological Assay/veterinary , Cell Line , Comet Assay/veterinary , DNA Damage , Gills/cytology , Lipid Peroxidation/drug effects , Reactive Oxygen Species/analysis , Survival Analysis
...