Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 57(11): 1308-1311, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33459327

ABSTRACT

A new monomer, 2-ferrocene-ethyl-2-oxazoline, was copolymerized with 2-alkyl-2-oxazolines. The cationic ring opening polymerization (CROP) of 2-oxazolines allows the synthesis of well-defined copolymers with adjustable molar masses as well as end-group control, which was also evident from kinetic studies. The utilization of this new comonomer led to redox-active polymers as proven by UV-VIS-measurements and cyclic-voltammetry.

2.
Angew Chem Int Ed Engl ; 57(9): 2479-2482, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29214708

ABSTRACT

A benzoin-derived diol linker was synthesized and used to generate biocompatible polyesters that can be fully decomposed on demand upon UV irradiation. Extensive structural optimization of the linker unit was performed to enable the defined encapsulation of diverse organic compounds in the polymeric structures and allow for a well-controllable polymer cleavage process. Selective tracking of the release kinetics of encapsulated model compounds from the polymeric nano- and microparticle containers was performed by confocal laser scanning microscopy in a proof-of-principle study. The physicochemical properties of the incorporated and released model compounds ranged from fully hydrophilic to fully hydrophobic. The demonstrated biocompatibility of the utilized polyesters and degradation products enables their use in advanced applications, for example, for the smart packaging of UV-sensitive pharmaceuticals, nutritional components, or even in the area of spatially selective self-healing processes.

3.
J Mater Chem B ; 5(6): 1258-1274, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-32263594

ABSTRACT

Cationic polymers play a crucial role within the field of gene delivery offering the possibility to circumvent (biological) barriers in an elegant way. However, polymers are accompanied either by a high cytotoxicity or low efficiency. In this study, a series of high molar mass poly(2-oxazoline)-based copolymers was synthesized introducing 2-ethyl-2-oxazoline, ethylene imine, and primary amine bearing monomer units representing a new generation of poly(ethylene imine) (PEI). The potential of these modified PEIs as non-viral gene delivery agents was assessed and compared to linear PEI by studying the cytotoxicity, the polyplex characteristics, the transfection efficiency, and the cellular uptake using plasmid DNA (pDNA) as well as small interfering RNA (siRNA). High transfection efficiencies, even in serum containing media, were achieved using pDNA without revealing any cytotoxic effects on the cell viability at concentrations up to 1 mg mL-1. The delivery potential for siRNA was further investigated showing the importance of polymer composition for different genetic materials. To elucidate the origins for this superior performance, super-resolution and electron microscopy of transfected cells were used, identifying the endosomal release of the polymers as well as a reduced protein interaction as the main difference to PEI-based transfection processes. In this respect, the investigated copolymers represent remarkable alternatives as non-viral gene delivery agents.

4.
J Control Release ; 241: 1-14, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27586188

ABSTRACT

The targeted drug delivery to the central nervous system represents one of the major challenges in pharmaceutical formulations since it is strictly limited through the highly selective blood-brain barrier (BBB). l-Glutathione (GSH), a tripeptide and well-known antioxidant, has been studied in the last years as potential candidate to facilitate the receptor-mediated transcytosis of nanocarriers. We thus tested whether GSH decoration of a positively charged polymer, poly(ethylene imine), with this vector enables the transport of genetic material and, simultaneously, the passage through the BBB. In this study, we report the synthesis of GSH conjugated cationic poly(ethylene imine)s via ecologically desirable thiol-ene photo-addition. The copolymers, containing 80% primary or secondary amine groups, respectively, were investigated concerning their bio- and hemocompatibility as well as their ability to cross a hCMEC/D3 endothelial cell layer mimicking the BBB within microfluidically perfused biochips. We demonstrate that BBB passage depends on the used amino-groups and on the GSH ratio. Thereby the copolymer containing secondary amines showed an enhanced performance. We thus conclude that GSH-coupling represents a feasible and promising approach for the functionalization of nanocarriers intended to cross the BBB for the delivery of drugs to the central nervous system.


Subject(s)
Biocompatible Materials/chemical synthesis , Blood-Brain Barrier/metabolism , Drug Carriers/chemical synthesis , Gene Transfer Techniques , Glutathione/analogs & derivatives , Polyethyleneimine/analogs & derivatives , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacokinetics , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Endothelial Cells/metabolism , Glutathione/chemical synthesis , Glutathione/chemistry , Glutathione/pharmacokinetics , HEK293 Cells , Humans , Mice , Microscopy, Fluorescence , Polyethyleneimine/chemical synthesis , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL