Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38931817

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.

2.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791266

ABSTRACT

Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gßγ-activated phospholipase C (PLC)-ß/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.


Subject(s)
Catecholamines , Receptors, Adrenergic, alpha-2 , Receptors, G-Protein-Coupled , Animals , PC12 Cells , Rats , Receptors, G-Protein-Coupled/metabolism , Catecholamines/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Adipokines/metabolism , Chromaffin Cells/metabolism , Signal Transduction , Norepinephrine/metabolism , Norepinephrine/pharmacology
3.
Vitam Horm ; 124: 393-404, 2024.
Article in English | MEDLINE | ID: mdl-38408805

ABSTRACT

The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) ßarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and ßarrestins.


Subject(s)
Adrenal Cortex , Aldosterone , Humans , Aldosterone/metabolism , Angiotensin II , Angiotensin Receptor Antagonists/pharmacology , Drug Inverse Agonism , Angiotensin-Converting Enzyme Inhibitors , Adrenal Cortex/metabolism
4.
Drug Des Devel Ther ; 18: 71-80, 2024.
Article in English | MEDLINE | ID: mdl-38229917

ABSTRACT

Introduction: Nicotine is a major component of cigarette smoke with various detrimental cardiovascular effects, including increased oxidative stress in the heart. Agonism of α2-adrenergic receptors (ARs), such as with dexmedetomidine, has been documented to exert cardioprotective effects against oxidative stress and related apoptosis and necroptosis. α2-ARs are membrane-residing G protein-coupled receptors (GPCRs) that primarily activate Gi/o proteins. They are also subjected to GPCR-kinase (GRK)-2-dependent desensitization, which entails phosphorylation of the agonist-activated receptor by GRK2 to induce its decoupling from G proteins, thus terminating α2AR-mediated G protein signaling. Objective: In the present study, we sought to examine the effects of nicotine on α2AR signaling and effects in H9c2 cardiomyocytes exposed to H2O2 to induce oxidative cellular damage. Methods and Results: As expected, treatment of H9c2 cardiomyocytes with H2O2 significantly decreased cell viability and increased oxidative stress, as assessed by reactive oxygen species (ROS)-associated fluorescence levels (DCF assay) and superoxide dismutase activity. Both H2O2 effects were partly rescued by α2AR activation with brimonidine in control cardiomyocytes but not in cells pretreated with nicotine for 24 hours, in which brimonidine was unable to reduce H2O2-induced cell death and oxidative stress. This was due to severe α2AR desensitization, manifested as very low Gi protein activation by brimonidine, and accompanied by GRK2 upregulation in nicotine-treated cardiomyocytes. Finally, pharmacological inhibition of adenylyl cyclase (AC) blocked H2O2-dependent oxidative damage in nicotine-pretreated H9c2 cardiomyocytes, indicating that α2AR activation protects against oxidative injury via its classic coupling to Gai-mediated AC inhibition. Discussion/Conclusions: Nicotine can negate the cardioprotective effects of α2AR agonists against oxidative injury, which may have important implications for patients treated with this class of drugs that are chronic tobacco smokers.


Subject(s)
Myocytes, Cardiac , Nicotine , Humans , Nicotine/pharmacology , Nicotine/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Oxidative Stress , Apoptosis , Brimonidine Tartrate/metabolism , Brimonidine Tartrate/pharmacology
5.
Biochem Pharmacol ; 218: 115904, 2023 12.
Article in English | MEDLINE | ID: mdl-37922976

ABSTRACT

Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.


Subject(s)
Cardiovascular System , RGS Proteins , Humans , Angiotensin II/metabolism , Cardiovascular System/metabolism , GTP-Binding Proteins/metabolism , Hypertrophy , Receptor, Angiotensin, Type 1/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction
6.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047106

ABSTRACT

The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.


Subject(s)
Atrial Fibrillation , Heart Failure , RGS Proteins , Animals , Humans , Mice , GTP-Binding Proteins/metabolism , Mammals/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction/physiology
7.
Prog Mol Biol Transl Sci ; 193(1): 145-166, 2022.
Article in English | MEDLINE | ID: mdl-36357075

ABSTRACT

G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.


Subject(s)
Cardiovascular System , Heterotrimeric GTP-Binding Proteins , RGS Proteins , Humans , Animals , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Heterotrimeric GTP-Binding Proteins/metabolism , Cardiovascular System/metabolism , Mammals/metabolism
8.
Methods Mol Biol ; 2547: 267-273, 2022.
Article in English | MEDLINE | ID: mdl-36068469

ABSTRACT

α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Norepinephrine , Epinephrine/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Norepinephrine/pharmacology , Phosphorylation
9.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35628613

ABSTRACT

Propionic acid is a cell nutrient but also a stimulus for cellular signaling. Free fatty acid receptor (FFAR)-3, also known as GPR41, is a Gi/o protein-coupled receptor (GPCR) that mediates some of the propionate's actions in cells, such as inflammation, fibrosis, and increased firing/norepinephrine release from peripheral sympathetic neurons. The regulator of G-protein Signaling (RGS)-4 inactivates (terminates) both Gi/o- and Gq-protein signaling and, in the heart, protects against atrial fibrillation via calcium signaling attenuation. RGS4 activity is stimulated by ß-adrenergic receptors (ARs) via protein kinase A (PKA)-dependent phosphorylation. Herein, we examined whether RGS4 modulates cardiac FFAR3 signaling/function. We report that RGS4 is essential for dampening of FFAR3 signaling in H9c2 cardiomyocytes, since siRNA-mediated RGS4 depletion significantly enhanced propionate-dependent cAMP lowering, Gi/o activation, p38 MAPK activation, pro-inflammatory interleukin (IL)-1ß and IL-6 production, and pro-fibrotic transforming growth factor (TGF)-ß synthesis. Additionally, catecholamine pretreatment blocked propionic acid/FFAR3 signaling via PKA-dependent activation of RGS4 in H9c2 cardiomyocytes. Finally, RGS4 opposes FFAR3-dependent norepinephrine release from sympathetic-like neurons (differentiated Neuro-2a cells) co-cultured with H9c2 cardiomyocytes, thereby preserving the functional ßAR number of the cardiomyocytes. In conclusion, RGS4 appears essential for propionate/FFAR3 signaling attenuation in both cardiomyocytes and sympathetic neurons, leading to cardioprotection against inflammation/adverse remodeling and to sympatholysis, respectively.


Subject(s)
Fatty Acids, Nonesterified , Neurons , Norepinephrine , RGS Proteins , Receptors, G-Protein-Coupled , Calcium Signaling , Fatty Acids, Nonesterified/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Inflammation/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Propionates/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism
10.
Int J Mol Sci ; 23(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35328722

ABSTRACT

Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.


Subject(s)
Receptors, Cell Surface , Receptors, G-Protein-Coupled , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Volatile , Humans , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
11.
J Cardiovasc Pharmacol ; 80(3): 386-392, 2022 09 01.
Article in English | MEDLINE | ID: mdl-34983911

ABSTRACT

ABSTRACT: Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as ß-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the ß-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland.


Subject(s)
Aldosterone , Heart Failure , Aldosterone/metabolism , Epinephrine , Heart Failure/drug therapy , Humans , Norepinephrine , Receptors, Adrenergic/therapeutic use , Receptors, G-Protein-Coupled/metabolism
12.
Pharmacol Res ; 174: 105943, 2021 12.
Article in English | MEDLINE | ID: mdl-34662735

ABSTRACT

The physiological and pathophysiological roles of the angiotensin II type 1 (AT1) receptor, a G protein-coupled receptor ubiquitously expressed throughout the cardiovascular system, have been the focus of intense investigations for decades. The success of angiotensin converting enzyme inhibitors (ACEIs) and of angiotensin receptor blockers (ARBs), which are AT1R-selective antagonists/inverse agonists, in the treatment of heart disease is a testament to the importance of this receptor for cardiovascular homeostasis. Given the pleiotropic signaling of the cardiovascular AT1R and, in an effort to develop yet better drugs for heart disease, the concept of biased signaling has been exploited to design and develop biased AT1R ligands that selectively activate ß-arrestin transduction pathways over Gq protein-dependent pathways. However, by focusing solely on Gq or ß-arrestins, studies on AT1R "biased" signaling & agonism tend to largely ignore other non-Gq-, non ß-arrestin-dependent signaling modalities the very versatile AT1R employs in cardiovascular tissues, including two very important types of signal transducers/regulators: other G protein types (e.g., Gi/o, G12/13) & the Regulator of G protein Signaling (RGS) proteins. In this review, we provide a brief overview of the current state of cardiovascular AT1R biased signaling field with a special focus on the non-Gq-, non ß-arrestin-dependent signaling avenues of this receptor in the cardiovascular system, which usually get left out of the conversation of "biased" AT1R signal transduction.


Subject(s)
Receptor, Angiotensin, Type 1/metabolism , Adrenal Glands/metabolism , Animals , Cardiovascular System/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Signal Transduction , beta-Arrestins/metabolism
13.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299304

ABSTRACT

Heart failure (HF) remains the leading cause of morbidity and death in the western world, and new therapeutic modalities are urgently needed to improve the lifespan and quality of life of HF patients. The sodium-glucose co-transporter-2 (SGLT2) inhibitors, originally developed and mainly indicated for diabetes mellitus treatment, have been increasingly shown to ameliorate heart disease, and specifically HF, in humans, regardless of diabetes co-existence. Indeed, dapagliflozin has been reported to reduce cardiovascular mortality and hospitalizations in patients with HF and reduced ejection fraction (HFrEF). This SGLT2 inhibitor demonstrates these benefits also in non-diabetic subjects, indicating that dapagliflozin's efficacy in HF is independent of blood glucose control. Evidence for the effectiveness of various SGLT2 inhibitors in providing cardiovascular benefits irrespective of their effects on blood glucose regulation have spurred the use of these agents in HFrEF treatment and resulted in FDA approvals for cardiovascular indications. The obvious question arising from all these studies is, of course, which molecular/pharmacological mechanisms underlie these cardiovascular benefits of the drugs in diabetics and non-diabetics alike. The fact that SGLT2 is not significantly expressed in cardiac myocytes (SGLT1 appears to be the dominant isoform) adds even greater perplexity to this answer. A variety of mechanisms have been proposed over the past few years and tested in cell and animal models and prominent among those is the potential for sympatholysis, i.e., reduction in sympathetic nervous system activity. The latter is known to be high in HF patients, contributing significantly to the morbidity and mortality of the disease. The present minireview first summarizes the current evidence in the literature supporting the notion that SGLT2 inhibitors, such as dapagliflozin and empagliflozin, exert sympatholysis, and also outlines the main putative underlying mechanisms for these sympatholytic effects. Then, we propose a novel hypothesis, centered on the adrenal medulla, for the sympatholytic effects specifically of dapagliflozin. Adrenal medulla is responsible for the production and secretion of almost the entire amount of circulating epinephrine and of a significant percentage of circulating norepinephrine in the human body. If proven true experimentally, this hypothesis, along with other emerging experimental evidence for sympatholytic effects in neurons, will shed new light on the pharmacological effects that mediate the cardiovascular benefits of SGLT2 inhibitor drugs, independently of their blood glucose-lowering effects.


Subject(s)
Adrenal Glands/drug effects , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sympatholytics/pharmacology , Adrenal Glands/physiology , Animals , Benzhydryl Compounds/chemistry , Cardiovascular Agents/pharmacology , Catecholamines/biosynthesis , Glucosides/chemistry , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Ketone Bodies/metabolism , Models, Biological , Receptors, G-Protein-Coupled/metabolism , Sodium-Glucose Transporter 2 Inhibitors/chemistry , Stroke Volume/drug effects , Structure-Activity Relationship
14.
Cells ; 10(6)2021 06 19.
Article in English | MEDLINE | ID: mdl-34205363

ABSTRACT

The mineralocorticoid aldosterone regulates electrolyte and blood volume homeostasis, but it also adversely modulates the structure and function of the chronically failing heart, through its elevated production in chronic human post-myocardial infarction (MI) heart failure (HF). By activating the mineralocorticoid receptor (MR), a ligand-regulated transcription factor, aldosterone promotes inflammation and fibrosis of the heart, while increasing oxidative stress, ultimately induding mitochondrial dysfunction in the failing myocardium. To reduce morbidity and mortality in advanced stage HF, MR antagonist drugs, such as spironolactone and eplerenone, are used. In addition to the MR, aldosterone can bind and stimulate other receptors, such as the plasma membrane-residing G protein-coupled estrogen receptor (GPER), further complicating it signaling properties in the myocardium. Given the salient role that adrenergic receptor (ARs)-particularly ßARs-play in cardiac physiology and pathology, unsurprisingly, that part of the impact of aldosterone on the failing heart is mediated by its effects on the signaling and function of these receptors. Aldosterone can significantly precipitate the well-documented derangement of cardiac AR signaling and impairment of AR function, critically underlying chronic human HF. One of the main consequences of HF in mammalian models at the cellular level is the presence of mitochondrial dysfunction. As such, preventing mitochondrial dysfunction could be a valid pharmacological target in this condition. This review summarizes the current experimental evidence for this aldosterone/AR crosstalk in both the healthy and failing heart, and the impact of mitochondrial dysfunction in HF. Recent findings from signaling studies focusing on MR and AR crosstalk via non-conventional signaling of molecules that normally terminate the signaling of ARs in the heart, i.e., the G protein-coupled receptor-kinases (GRKs), are also highlighted.


Subject(s)
Aldosterone/metabolism , Heart Failure/metabolism , Mitochondria, Heart/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, Adrenergic/metabolism , Signal Transduction , Animals , Heart Failure/etiology , Heart Failure/pathology , Humans , Mitochondria, Heart/pathology , Myocardial Infarction/complications , Myocardial Infarction/pathology , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...