Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
PLoS Pathog ; 20(10): e1012592, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39378227

ABSTRACT

Neutrophils rapidly infiltrate sites of infection and possess several microbicidal strategies, such as neutrophil extracellular traps release and phagocytosis. Enhanced neutrophil infiltration is associated with higher susceptibility to Leishmania infection, but neutrophil effector response contribution to this phenotype is uncertain. Here, we show that neutrophils from susceptible BALB/c mice (B/c) produce more NETs in response to Leishmania major than those from resistant C57BL/6 mice (B6), which are more phagocytic. The absence of neutrophil elastase contributes to phagocytosis regulation. Microarray analysis shows enrichment of genes involved in NET formation (mpo, pi3kcg, il1b) in B/c, while B6 shows upregulation of genes involved in phagocytosis and cell death (Arhgap12, casp9, mlkl, FasL). scRNA-seq in L. major-infected B6 showed heterogeneity in the pool of intralesional neutrophils, and we identified the N1 subset as the putative subpopulation involved with phagocytosis. In vivo, imaging validates NET formation in infected B/c ears where NETing neutrophils were mainly uninfected cells. NET digestion in vivo augmented parasite lymphatic drainage. Hence, a balance between NET formation and phagocytosis in neutrophils may contribute to the divergent phenotype observed in these mice.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils , Phagocytosis , Animals , Leishmania major/immunology , Neutrophils/immunology , Mice , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Extracellular Traps/immunology , Disease Susceptibility , Female
2.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972873

ABSTRACT

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Subject(s)
Membrane Glycoproteins , Myeloid Cells , Neoplasms , Receptors, Immunologic , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Prognosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Female , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics
3.
Cells ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786036

ABSTRACT

Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.


Subject(s)
Macrophages , Monocytes , Th1 Cells , Humans , Monocytes/drug effects , Monocytes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Peptides/pharmacology , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Interleukin-10/metabolism , Lymphocyte Activation/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects
4.
Cancer Med ; 13(3): e6729, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308422

ABSTRACT

BACKGROUND: Approximately 3/4 of ovarian cancers are diagnosed in advanced stages, with the high-grade epithelial ovarian carcinoma (EOC) accounting for 90% of the cases. EOC present high genomic instability and somatic loss-of-function variants in genes associated with homologous recombination mutational repair pathway (HR), such as BRCA1 and BRCA2, and in TP53. The identification of germline variants in HR genes in EOC is relevant for treatment of platinum resistant tumors and relapsed tumors with therapies based in synthetic lethality such as PARP inhibitors. Patients with somatic variants in HR genes may also benefit from these therapies. In this work was analyzed the frequency of somatic variants in BRCA1, BRCA2, and TP53 in an EOC cohort of Brazilian patients, estimating the proportion of variants in tumoral tissue and their association with progression-free survival and overall survival. METHODS: The study was conducted with paired blood/tumor samples from 56 patients. Germline and tumoral sequences of BRCA1, BRCA2, and TP53 were obtained by massive parallel sequencing. The HaplotypeCaller method was used for calling germline variants, and somatic variants were called with Mutect2. RESULTS: A total of 26 germline variants were found, and seven patients presented germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2. The analysis of tumoral tissue identified 52 somatic variants in 41 patients, being 43 somatic variants affecting or likely affecting protein functionality. Survival analyses showed that tumor staging was associated with overall survival (OS), while the presence of somatic mutation in TP53 was not associated with OS or progression-free survival. CONCLUSION: Frequency of pathogenic or likely pathogenic germline variants in BRCA1 and BRCA2 (12.5%) was lower in comparison with other studies. TP53 was the most altered gene in tumors, with 62.5% presenting likely non-functional or non-functional somatic variants, while eight 14.2% presented likely non-functional or non-functional somatic variants in BRCA1 or BRCA2.


Subject(s)
Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/genetics , Brazil/epidemiology , Ovarian Neoplasms/genetics , DNA Repair , Germ Cells , Tumor Suppressor Protein p53/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics
5.
Gene ; 883: 147668, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37500024

ABSTRACT

Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.


Subject(s)
Ricinus communis , Ricinus communis/genetics , Ricinus communis/metabolism , Ricinus/genetics , Ricinus/metabolism , Gene Regulatory Networks , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism
6.
Cell Rep ; 42(1): 112035, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36848232

ABSTRACT

Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.


Subject(s)
AMP-Activated Protein Kinases , Natural Killer T-Cells , Inflammation , Liver , Metabolome , Obesity , Animals , Mice
7.
Sci Rep ; 12(1): 20645, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450755

ABSTRACT

To investigate similarities in the gene profile of Oral Lichen Planus and Oral Squamous Cell Carcinoma that may justify a carcinogenic potential, we analyzed the gene expression signatures of Oral Lichen Planus and Oral Squamous Cell Carcinoma in early and advanced stages. Based on gene expression data from public databases, we used a bioinformatics approach to compare expression profiles, estimate immune infiltrate composition, identify differentially and co-expressed genes, and propose putative therapeutic targets and associated drugs. Our results revealed gene expression patterns related to processes of keratinization, keratinocyte differentiation, cell proliferation and immune response in common between Oral Lichen Planus and early and advanced Oral Squamous Cell Carcinoma, with the cornified envelope formation and antigen processing cross-presentation pathways in common between Oral Lichen Planus and early Oral Squamous Cell Carcinoma. Together, these results reveal that key tumor suppressors and oncogenes such as PI3, SPRR1B and KRT17, as well as genes associated with different immune processes such as CXCL13, HIF1A and IL1B are dysregulated in OLP.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Lichen Planus, Oral , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Lichen Planus, Oral/genetics , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Oncogenes , Carcinogenesis/genetics
8.
Nat Commun ; 13(1): 6725, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344512

ABSTRACT

The poor prognosis of head and neck cancer (HNC) is associated with metastasis within the lymph nodes (LNs). Herein, the proteome of 140 multisite samples from a 59-HNC patient cohort, including primary and matched LN-negative or -positive tissues, saliva, and blood cells, reveals insights into the biology and potential metastasis biomarkers that may assist in clinical decision-making. Protein profiles are strictly associated with immune modulation across datasets, and this provides the basis for investigating immune markers associated with metastasis. The proteome of LN metastatic cells recapitulates the proteome of the primary tumor sites. Conversely, the LN microenvironment proteome highlights the candidate prognostic markers. By integrating prioritized peptide, protein, and transcript levels with machine learning models, we identify nodal metastasis signatures in blood and saliva. We present a proteomic characterization wiring multiple sites in HNC, thus providing a promising basis for understanding tumoral biology and identifying metastasis-associated signatures.


Subject(s)
Head and Neck Neoplasms , Proteome , Humans , Lymphatic Metastasis/pathology , Proteomics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Lymph Nodes/pathology , Tumor Microenvironment
9.
Sci Rep ; 12(1): 18629, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329109

ABSTRACT

Several studies have demonstrated the cost-effectiveness of genetic testing for surveillance and treatment of carriers of germline pathogenic variants associated with hereditary breast/ovarian cancer syndrome (HBOC). In Brazil, seventy percent of the population is assisted by the public Unified Health System (SUS), where genetic testing is still unavailable. And few studies were performed regarding the prevalence of HBOC pathogenic variants in this context. Here, we estimated the prevalence of germline pathogenic variants in BRCA1, BRCA2 and TP53 genes in Brazilian patients suspected of HBOC and referred to public healthcare service. Predictive power of risk prediction models for detecting mutation carriers was also evaluated. We found that 41 out of 257 tested patients (15.9%) were carriers of pathogenic variants in the analyzed genes. Most frequent pathogenic variant was the founder Brazilian mutation TP53 c.1010G > A (p.Arg337His), adding to the accumulated evidence that supports inclusion of TP53 in routine testing of Brazilian HBOC patients. Surprisingly, BRCA1 c.5266dupC (p.Gln1756fs), a frequently reported pathogenic variant in Brazilian HBOC patients, was not observed. Regarding the use of predictive models, we found that familial history of cancer might be used to improve selection or prioritization of patients for genetic testing, especially in a context of limited resources.


Subject(s)
Breast Neoplasms , Neoplastic Syndromes, Hereditary , Ovarian Neoplasms , Female , Humans , Brazil/epidemiology , Prevalence , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Genetic Predisposition to Disease , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Carcinoma, Ovarian Epithelial , Delivery of Health Care , Germ-Line Mutation , Tumor Suppressor Protein p53/genetics
10.
Front Genet ; 13: 979735, 2022.
Article in English | MEDLINE | ID: mdl-36212152

ABSTRACT

Melanoma is one of the most aggressive tumors, and its lethality is associated with the ability of malignant cells to migrate and invade surrounding tissues to colonize distant organs and to generate widespread metastasis. The serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2) are classically related to the control of pre-mRNA splicing through SR protein phosphorylation and have been found overexpressed in many types of cancer, including melanoma. Previously, we have demonstrated that the pharmacological inhibition of SRPKs impairs pulmonary colonization of metastatic melanoma in mice. As the used compounds could target at least both SRPK1 and SRPK2, here we sought to obtain additional clues regarding the involvement of these paralogs in melanoma progression. We analyzed single-cell RNA sequencing data of melanoma patient cohorts and found that SRPK2 expression in melanoma cells is associated with poor prognosis. Consistently, CRISPR-Cas9 genome targeting of SRPK2, but not SRPK1, impaired actin polymerization dynamics as well as the proliferative and invasive capacity of B16F10 cells in vitro. In further in vivo experiments, genetic targeting of SRPK2, but not SRPK1, reduced tumor progression in both subcutaneous and caudal vein melanoma induction models. Taken together, these findings suggest different functional roles for SRPK1/2 in metastatic melanoma and highlight the relevance of pursuing selective pharmacological inhibitors of SRPK2.

12.
Nat Commun ; 13(1): 5722, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175400

ABSTRACT

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipose Tissue , Angiotensin-Converting Enzyme 2 , Cytokines , Humans
13.
Nutrients ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807851

ABSTRACT

Dietary restriction (DR) reduces adiposity and improves metabolism in patients with one or more symptoms of metabolic syndrome. Nonetheless, it remains elusive whether the benefits of DR in humans are mediated by calorie or nutrient restriction. This study was conducted to determine whether isocaloric dietary protein restriction is sufficient to confer the beneficial effects of dietary restriction in patients with metabolic syndrome. We performed a prospective, randomized controlled dietary intervention under constant nutritional and medical supervision. Twenty-one individuals diagnosed with metabolic syndrome were randomly assigned for caloric restriction (CR; n = 11, diet of 5941 ± 686 KJ per day) or isocaloric dietary protein restriction (PR; n = 10, diet of 8409 ± 2360 KJ per day) and followed for 27 days. Like CR, PR promoted weight loss due to a reduction in adiposity, which was associated with reductions in blood glucose, lipid levels, and blood pressure. More strikingly, both CR and PR improved insulin sensitivity by 62.3% and 93.2%, respectively, after treatment. Fecal microbiome diversity was not affected by the interventions. Adipose tissue bulk RNA-Seq data revealed minor changes elicited by the interventions. After PR, terms related to leukocyte proliferation were enriched among the upregulated genes. Protein restriction is sufficient to confer almost the same clinical outcomes as calorie restriction without the need for a reduction in calorie intake. The isocaloric characteristic of the PR intervention makes this approach a more attractive and less drastic dietary strategy in clinical settings and has more significant potential to be used as adjuvant therapy for people with metabolic syndrome.


Subject(s)
Metabolic Syndrome , Caloric Restriction , Diet, Protein-Restricted , Dietary Proteins , Humans , Obesity , Prospective Studies
14.
Biochem Pharmacol ; 203: 115161, 2022 09.
Article in English | MEDLINE | ID: mdl-35787994

ABSTRACT

Cancers have a strong relationship with immune cells in their microenvironment, which significantly influences tumor proliferation and progression. Thus, pharmacological strategies that stimulate the immune system to combat tumor cells are promising for better therapeutic efficacy. Deregulated expression of the splicing regulatory serine arginine protein kinases (mostly SRPK1 and SRPK2) has been found in different cancer types, leading to the expression of isoforms related to tumor growth and metastasis. The microenvironment of melanoma exhibits a strong presence of immune cells, which significantly influences tumor progression, and around 50% of cutaneous melanoma patients benefit from targeted immunotherapy. Here, we analyzed human malignant melanoma single-cell gene expression data and observed that SRPK1/2 overexpression correlates with immune system pathway alterations. In further analysis, we observed an increased presence of immune cells in biopsies from mice bearing metastatic melanoma treated with SRPIN340, a well-known SRPK1/2 pharmacological inhibitor. Local treatments increased the expression of proinflammatory cytokines at the tumor lesions and the activity of the spleen, accompanied by reduced pulmonary metastasis foci, edema formation, and alveolar congestion. In in vitro assays, SRPIN340 also potentiated immunological susceptibility, by increasing the expression of the antigen presenting MHCI and MHCII molecules and by increasing the ability of B16F10 cells to attract splenic cells in transwell assays. Taken together, these results reveal that the antimetastatic effect of SRPIN340 can also involve an increased immune response, which suggests additional functional clues for SRPKs in tumor biology.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Humans , Immunity , Melanoma/drug therapy , Mice , Niacinamide/analogs & derivatives , Piperidines , Protein Serine-Threonine Kinases , Skin Neoplasms/drug therapy , Tumor Microenvironment
15.
Front Oncol ; 12: 904813, 2022.
Article in English | MEDLINE | ID: mdl-35875117

ABSTRACT

Homologous recombination is a crucial pathway that is specialized in repairing double-strand breaks; thus, alterations in genes of this pathway may lead to loss of genomic stability and cell growth suppression. Pesticide exposure potentially increases cancer risk through several mechanisms, such as the genotoxicity caused by chronic exposure, leading to gene alteration. To analyze this hypothesis, we investigated if breast cancer patients exposed to pesticides present a different mutational pattern in genes related to homologous recombination (BRCA1, BRCA2, PALB2, and RAD51D) and damage-response (TP53) concerning unexposed patients. We performed multiplex PCR-based assays and next-generation sequencing (NGS) of all coding regions and flanking splicing sites of BRCA1, BRCA2, PALB2, TP53, and RAD51D in 158 unpaired tumor samples from breast cancer patients on MiSeq (Illumina) platform. We found that exposed patients had tumors with more pathogenic and likely pathogenic variants than unexposed patients (p = 0.017). In general, tumors that harbored a pathogenic or likely pathogenic variant had a higher mutational burden (p < 0.001). We also observed that breast cancer patients exposed to pesticides had a higher mutational burden when diagnosed before 50 years old (p = 0.00978) and/or when carrying BRCA1 (p = 0.0138), BRCA2 (p = 0.0366), and/or PALB2 (p = 0.00058) variants, a result not found in the unexposed group. Our results show that pesticide exposure impacts the tumor mutational landscape and could be associated with the carcinogenesis process, therapy response, and disease progression. Further studies should increase the observation period in exposed patients to better evaluate the impact of these findings.

16.
Front Pharmacol ; 13: 749472, 2022.
Article in English | MEDLINE | ID: mdl-35734412

ABSTRACT

The KMT2A (MLL) gene rearrangements (KMT2A-r) are associated with a diverse spectrum of acute leukemias. Although most KMT2A-r are restricted to nine partner genes, we have recently revealed that KMT2A-USP2 fusions are often missed during FISH screening of these genetic alterations. Therefore, complementary methods are important for appropriate detection of any KMT2A-r. Here we use a machine learning model to unravel the most appropriate markers for prediction of KMT2A-r in various types of acute leukemia. A Random Forest and LightGBM classifier was trained to predict KMT2A-r in patients with acute leukemia. Our results revealed a set of 20 genes capable of accurately estimating KMT2A-r. The SKIDA1 (AUC: 0.839; CI: 0.799-0.879) and LAMP5 (AUC: 0.746; CI: 0.685-0.806) overexpression were the better markers associated with KMT2A-r compared to CSPG4 (also named NG2; AUC: 0.722; CI: 0.659-0.784), regardless of the type of acute leukemia. Of importance, high expression levels of LAMP5 estimated the occurrence of all KMT2A-USP2 fusions. Also, we performed drug sensitivity analysis using IC50 data from 345 drugs available in the GDSC database to identify which ones could be used to treat KMT2A-r leukemia. We observed that KMT2A-r cell lines were more sensitive to 5-Fluorouracil (5FU), Gemcitabine (both antimetabolite chemotherapy drugs), WHI-P97 (JAK-3 inhibitor), Foretinib (MET/VEGFR inhibitor), SNX-2112 (Hsp90 inhibitor), AZD6482 (PI3Kß inhibitor), KU-60019 (ATM kinase inhibitor), and Pevonedistat (NEDD8-activating enzyme (NAE) inhibitor). Moreover, IC50 data from analyses of ex-vivo drug sensitivity to small-molecule inhibitors reveals that Foretinib is a promising drug option for AML patients carrying FLT3 activating mutations. Thus, we provide novel and accurate options for the diagnostic screening and therapy of KMT2A-r leukemia, regardless of leukemia subtype.

17.
Cancers (Basel) ; 13(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208581

ABSTRACT

Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.

18.
Cells ; 10(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073434

ABSTRACT

The skin is our largest organ and the outermost protective barrier. Its aging reflects both intrinsic and extrinsic processes resulting from the constant insults it is exposed to. Aging in the skin is accompanied by specific epigenetic modifications, accumulation of senescent cells, reduced cellular proliferation/tissue renewal, altered extracellular matrix, and a proinflammatory environment favoring undesirable conditions, including disease onset. Macrophages (Mφ) are the most abundant immune cell type in the skin and comprise a group of heterogeneous and plastic cells that are key for skin homeostasis and host defense. However, they have also been implicated in orchestrating chronic inflammation during aging. Since Mφ are related to innate and adaptive immunity, it is possible that age-modified skin Mφ promote adaptive immunity exacerbation and exhaustion, favoring the emergence of proinflammatory pathologies, such as skin cancer. In this review, we will highlight recent findings pertaining to the effects of aging hallmarks over Mφ, supporting the recognition of such cell types as a driving force in skin inflammaging and age-related diseases. We will also present recent research targeting Mφ as potential therapeutic interventions in inflammatory skin disorders and cancer.


Subject(s)
Adaptive Immunity/immunology , Aging/physiology , Cellular Senescence/physiology , Macrophages/metabolism , Skin Neoplasms/pathology , Animals , Humans , Leukocyte Count/methods , Macrophages/immunology , Skin Neoplasms/immunology
19.
Comput Biol Med ; 134: 104470, 2021 07.
Article in English | MEDLINE | ID: mdl-34004576

ABSTRACT

Osteosarcoma (OS) is an aggressive bone malignancy and the third most common cancer in adolescence. Since the late 1970s, OS therapy and prognosis had only modest improvements, making it appealing to explore new tools that could help ameliorate the treatment. We present a meta-analysis of the gene expression signature of primary OS, and propose small molecules that could reverse this signature. The meta-analysis was performed using GEO microarray series. We first compared gene expression from eleven primary OS against osteoblasts to obtain the differentially expressed genes (DEGs). We later filtered those DEGs by verifying which ones had a concordant direction of differential expression in a validation group of 82 OS samples versus 30 bone marrow mesenchymal stem cells (BM-MSC) samples. A final gene expression signature of 266 genes (98 up and 168 down regulated) was obtained. The L1000CDS2 engine was used for drug repurposing. The top molecules predicted to reverse the signature were afatinib (PubChem CID 10184653), BRD-K95196255 (PubChem CID 3242434), DG-041 (PubChem CID 11296282) and CA-074 Me (PubChem CID 23760717). Afatinib (Gilotrif™) is currently used for metastatic non-small-cell lung cancer with EGFR mutations, and in vitro evidence shows antineoplastic potential in OS cells. The other three molecules have reports of antineoplastic effects, but are not currently FDA-approved. Further studies are necessary to establish the potential of these drugs in OS treatment. We believe our results can be an important contribution for the investigation of new therapeutic genetic targets and for selecting new drugs to be tested for OS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Osteosarcoma , Pharmaceutical Preparations , Adolescent , Drug Repositioning , Humans , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Transcriptome/genetics
20.
Cancer Cell Int ; 21(1): 69, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482809

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is among the deadliest cancers, wherein early dissemination of tumor cells, and consequently, metastasis formation, are the main causes of mortality and poor prognosis. Cofilin-1 (CFL-1) and its modulators, LIMK1/SSH1, play key roles in mediating the invasiveness by driving actin cytoskeleton reorganization in various cancer types. However, their clinical significance and prognostic value in CRC has not been fully explored. Here, we evaluated the clinical contribution of these actin regulators according to TNM and consensus molecular subtypes (CMSs) classification. METHODS: CFL-1, LIMK1 and SSH1 mRNA/protein levels were assessed by real-time PCR and immunohistochemical analyses using normal adjacent and tumor tissues obtained from a clinical cohort of CRC patients. The expression levels of these proteins were associated with clinicopathological features by using the chi square test. In addition, using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we determine how these actin regulators are expressed and distributed according to TNM and CMSs classification. Based on gene expression profiling, Kaplan-Meier survival analysis was used to evaluated overall survival. RESULTS: Bioinformatic analysis revealed that LIMK1 expression was upregulated in all tumor stages. Patients with high levels of LIMK1 demonstrated significantly lower overall survival rates and exhibited greater lymph node metastatic potential in a clinical cohort. In contrast, CFL-1 and SSH1 have expression downregulated in all tumor stages. However, immunohistochemical analyses showed that patients with high protein levels of CFL-1 and SSH1 exhibited greater lymph node metastatic potential and greater depth of local invasion. In addition, using the CMSs classification to evaluate different biological phenotypes of CRC, we observed that LIMK1 and SSH1 genes are upregulated in immune (CMS1) and mesenchymal (CMS4) subtypes. However, patients with high levels of LIMK1 also demonstrated significantly lower overall survival rates in canonical (CMS2), and metabolic (CMS3) subtypes. CONCLUSIONS: We demonstrated that CFL-1 and its modulators, LIMK1/SSH1, are differentially expressed and associated with lymph node metastasis in CRC. Finally, this expression profile may be useful to predict patients with aggressive signatures, particularly, the immune and mesenchymal subtypes of CRC.

SELECTION OF CITATIONS
SEARCH DETAIL