Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791483

Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer's disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue.


Alzheimer Disease , DNA Methylation , Epigenesis, Genetic , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Female , Male , Middle Aged , Brain/metabolism , Brain/pathology , Genome-Wide Association Study , Aged , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , CpG Islands/genetics , Cell Line , Lymphocytes/metabolism
2.
medRxiv ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38633784

Background and Objectives: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.

3.
Brain ; 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38227807

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of FTLD in MND is difficult to estimate. In this work we describe a large clinicopathologic series of MND, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multi-centre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data, and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (p < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (p = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% vs 61.4%; p < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.

4.
J Neurol ; 271(3): 1428-1438, 2024 Mar.
Article En | MEDLINE | ID: mdl-38012398

BACKGROUND AND OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. METHODS: We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. RESULTS: We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. CONCLUSION: We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.


Alzheimer Disease , Frontotemporal Dementia , Male , Humans , Alzheimer Disease/diagnosis , Frontotemporal Dementia/diagnostic imaging , Magnetic Resonance Imaging , Mental Status and Dementia Tests , Biomarkers/cerebrospinal fluid
5.
Alzheimers Dement ; 20(3): 1515-1526, 2024 Mar.
Article En | MEDLINE | ID: mdl-38018380

INTRODUCTION: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS: We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS: Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION: Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.


Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnosis , Galectin 3/genetics , Galectin 3/metabolism , tau Proteins/cerebrospinal fluid , Brain/pathology , Biomarkers/cerebrospinal fluid , C9orf72 Protein/genetics , Mutation/genetics
6.
J Neurol ; 271(4): 1973-1984, 2024 Apr.
Article En | MEDLINE | ID: mdl-38151575

Plasma biomarkers have emerged as promising tools for identifying amyloid beta (Aß) pathology. Before implementation in routine clinical practice, confounding factors modifying their concentration beyond neurodegenerative diseases should be identified. We studied the association of a comprehensive list of demographics, comorbidities, medication and laboratory parameters with plasma p-tau181, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) on a prospective memory clinic cohort and studied their impact on diagnostic accuracy for discriminating CSF/amyloid PET-defined Aß status. Three hundred sixty patients (mean age 66.5 years, 55% females, 53% Aß positive) were included. Sex, age and Aß status-adjusted models showed that only estimated glomerular filtration rate (eGFR, standardized ß -0.115 [-0.192 to -0.035], p = 0.005) was associated with p-tau181 levels, although with a much smaller effect than Aß status (0.685 [0.607-0.763], p < 0.001). Age, sex, body mass index (BMI), Charlson comorbidity index (CCI) and eGFR significantly modified GFAP concentration. Age, blood volume (BV) and eGFR were associated with NfL levels. p-tau181 predicted Aß status with 87% sensitivity and specificity with no relevant increase in diagnostic performance by adding any of the confounding factors. Using two cut-offs, plasma p-tau181 could have spared 62% of amyloid-PET/CSF testing. Excluding patients with chronic kidney disease did not change the proposed cut-offs nor the diagnostic performance. In conclusion, in a memory clinic cohort, age, sex, eGFR, BMI, BV and CCI slightly modified plasma p-tau181, GFAP and NfL concentrations but their impact on the diagnostic accuracy of plasma biomarkers for Aß status discrimination was minimal.


Alzheimer Disease , Amyloid beta-Peptides , Female , Humans , Aged , Male , Ambulatory Care Facilities , Biomarkers , Blood Volume , Demography , tau Proteins
7.
J Alzheimers Dis ; 93(3): 1169-1180, 2023.
Article En | MEDLINE | ID: mdl-37182884

BACKGROUND: Primary progressive aphasia (PPA) is a group of neurodegenerative disorders including Alzheimer's disease and frontotemporal dementia characterized by language deterioration. Transcranial direct current stimulation (tDCS) is a non-invasive intervention for brain dysfunction. OBJECTIVE: To evaluate the tolerability and efficacy of tDCS combined with speech therapy in the three variants of PPA. We evaluate changes in fMRI activity in a subset of patients. METHODS: Double-blinded, randomized, cross-over, and sham-controlled tDCS study. 15 patients with PPA were included. Each patient underwent two interventions: a) speech therapy + active tDCS and b) speech therapy + sham tDCS stimulation. A multifocal strategy with anodes placed in the left frontal and parietal regions was used to stimulate the entire language network. Efficacy was evaluated by comparing the results of two independent sets of neuropsychological assessments administered at baseline, immediately after the intervention, and at 1 month and 3 months after the intervention. In a subsample, fMRI scanning was performed before and after each intervention. RESULTS: The interventions were well tolerated. Participants in both arms showed clinical improvement, but no differences were found between active and sham tDCS interventions in any of the evaluations. There were trends toward better outcomes in the active tDCS group for semantic association and reading skills. fMRI identified an activity increase in the right frontal medial cortex and the bilateral paracingulate gyrus after the active tDCS intervention. CONCLUSION: We did not find differences between active and sham tDCS stimulation in clinical scores of language function in PPA patients.


Aphasia, Primary Progressive , Transcranial Direct Current Stimulation , Humans , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/therapy , Research Design , Semantics , Speech Therapy , Transcranial Direct Current Stimulation/methods
9.
Hum Brain Mapp ; 44(6): 2234-2244, 2023 04 15.
Article En | MEDLINE | ID: mdl-36661219

Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia with partly overlapping, symptoms and brain signatures. There is a need to establish an accurate diagnosis and to obtain markers for disease tracking. We combined unsupervised and supervised machine learning to discriminate between AD and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1 MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients; and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter volumes and cortical thickness measures using FreeSurfer. We used dimensionality reduction to obtain a single feature that was later used in a support vector machine for classification. Discrimination patterns were obtained with the contribution of each region to the single feature. Our algorithm differentiated CTR versus AD and CTR versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These increased up to 90.0% and 88.0% with longitudinal data. When we studied the classification between AD versus FTD we obtained an accuracy of 63.3% at the cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and longitudinal data respectively. Disease discrimination brain maps are in concordance with previous results obtained with classical approaches. By using a single feature, we were capable to classify CTR, AD, and FTD with good accuracy, considering the inherent overlap between diseases. Importantly, the algorithm can be used with cross-sectional and longitudinal data.


Alzheimer Disease , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Machine Learning
10.
Neurology ; 100(8): e860-e873, 2023 02 21.
Article En | MEDLINE | ID: mdl-36450604

BACKGROUND AND OBJECTIVES: Blood-based biomarkers have emerged as minimally invasive options for evaluating cognitive impairment. Most studies to date have assessed them in research cohorts, limiting their generalization to everyday clinical practice. We evaluated their diagnostic performance and clinical applicability in a prospective, real-world, memory clinic cohort. METHODS: All patients referred with suspected cognitive impairment between July 2019 and June 2021 were prospectively invited to participate. Five plasma biomarkers (tau phosphorylated at threonine 181 [p-tau181], glial fibrillary acidic protein [GFAP], neurofilament light chain [NfL], total tau [t-tau], and ubiquitin C-terminal hydrolase L1 [UCH-L1]) were determined with single-molecule array. Performance was assessed in comparison to clinical diagnosis (blinded to plasma results) and amyloid status (CSF/PET). A group of cognitively unimpaired (CU) controls was also included. RESULTS: Three hundred forty-nine participants (mean age 68, SD 8.3 years) and 36 CU controls (mean age 61.7, SD 8.2 years) were included. In the subcohort with available Alzheimer disease (AD) biomarkers (n = 268), plasma p-tau181 and GFAP had a high diagnostic accuracy to differentiate AD from non-neurodegenerative causes (area under the receiver operating characteristic curve 0.94 and 0.92, respectively), with p-tau181 systematically outperforming GFAP. Plasma p-tau181 levels predicted amyloid status (85% sensitivity and specificity) with accurate individual prediction in approximately 60% of the patients. Plasma NfL differentiated frontotemporal dementia (FTD) syndromes from CU (0.90) and non-neurodegenerative causes (0.93), whereas the discriminative capacity with AD and between all neurodegenerative and non-neurodegenerative causes was less accurate. A combination of p-tau181 and NfL identified FTD with 82% sensitivity and 85% specificity and had a negative predictive value for neurodegenerative diagnosis of 86%, ruling out half of the non-neurodegenerative diagnoses. In the subcohort without AD biomarkers, similar results were obtained. T-tau and UCH-L1 did not offer added diagnostic value. DISCUSSION: Plasma p-tau181 predicted amyloid status with high accuracy and could have potentially avoided CSF/amyloid PET testing in approximately 60% of subjects in a memory clinic setting. NfL was useful for identifying FTD from non-neurodegenerative causes but behaved worse than p-tau181 in all other comparisons. Combining p-tau181 and NfL improved diagnostic performance for FTD and non-neurodegenerative diagnoses. However, the 14% false-negative results suggest that further improvement is needed before implementation outside memory clinics. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that plasma p-tau181 correlates with the presence or absence of AD and a combination of plasma p-tau181 and NfL correlates moderately well with a diagnosis of FTD.


Alzheimer Disease , Frontotemporal Dementia , Memory, Episodic , Pick Disease of the Brain , Humans , Aged , Middle Aged , tau Proteins , Frontotemporal Dementia/diagnosis , Amyloid beta-Peptides , Alzheimer Disease/psychology , Biomarkers
11.
J Neurol ; 270(3): 1573-1586, 2023 Mar.
Article En | MEDLINE | ID: mdl-36443488

BACKGROUND AND OBJECTIVES: The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the onset of symptoms. METHODS: We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions to assess group-by-age interactions. RESULTS: A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata. DISCUSSION: We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking.


Frontotemporal Dementia , Motor Neuron Disease , White Matter , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , White Matter/diagnostic imaging , White Matter/pathology , C9orf72 Protein/genetics , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/genetics , Brain Stem/diagnostic imaging , Brain Stem/pathology , Motor Neurons/pathology , Mutation
12.
Ann Clin Transl Neurol ; 9(12): 1962-1973, 2022 Dec.
Article En | MEDLINE | ID: mdl-36398437

OBJECTIVES: Early- and late-onset Alzheimer's disease (EOAD and LOAD) share the same neuropathological traits but show distinct cognitive features. We aimed to explore baseline and longitudinal outcomes of global and domain-specific cognitive function in a well characterized cohort of patients with a biomarker-based diagnosis. METHODS: In this retrospective cohort study, 195 participants were included and classified according to their age, clinical status, and CSF AD biomarker profile: 89 EOAD, 37 LOAD, 46 young healthy controls (age ≤ 65 years), and 23 old healthy controls (>65 years). All subjects underwent clinical and neuropsychological assessment, neuroimaging, APOE genotyping and lumbar puncture. RESULTS: We found distinct neuropsychological profiles between EOAD and LOAD at the time of diagnosis. Both groups showed similar performances on memory and language domains, but the EOAD patients displayed worsened deficits in visual perception, praxis, and executive tasks (p < 0.05). Longitudinally, cognitive decline in EOAD was more pronounced than LOAD in the global outcomes at the expense of these non-amnestic domains. We found that years of education significantly influenced the decline in most of the neuropsychological tests. Besides, the APOE ε4 status showed a significant effect on the decline of memory-related tasks within the EOAD cohort (p < 0.05). INTERPRETATION: Age of onset is a main factor shaping the cognitive trajectories in AD patients, with younger age driving to a steeper decline of the non-memory domains. Years of education are related to a transversal decline in all cognitive domains and APOE ε4 status to a specific decline in memory performance in EOAD.


Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/pathology , Retrospective Studies , Age of Onset , Cognitive Dysfunction/etiology , Neuropsychological Tests
13.
Eur J Neurol ; 29(12): 3623-3632, 2022 12.
Article En | MEDLINE | ID: mdl-36005384

BACKGROUND AND PURPOSE: Sex is believed to drive heterogeneity in Alzheimer's disease (AD), although evidence in early-onset AD (EOAD; <65 years) is scarce. METHODS: We included 62 EOAD patients and 44 healthy controls (HCs) with core AD cerebrospinal fluid (CSF) biomarkers, neurofilament light chain levels, neuropsychological assessment, and 3-T magnetic resonance imaging. We measured cortical thickness (CTh) and hippocampal subfield volumes (HpS) using FreeSurfer. Adjusted linear models were used to analyze sex-differences and the relationship between atrophy and cognition. RESULTS: Compared to same-sex HCs, female EOAD subjects showed greater cognitive impairment and broader atrophy burden than male EOAD subjects. In a direct female-EOAD versus male-EOAD comparison, there were slight differences in temporal CTh, with no differences in cognition or HpS. CSF tau levels were higher in female EOAD than in male EOAD subjects. Greater atrophy was associated with worse cognition in female EOAD subjects. CONCLUSIONS: At diagnosis, there are sex differences in the pattern of cognitive impairment, atrophy burden, and CSF tau in EOAD, suggesting there is an influence of sex on pathology spreading and susceptibility to the disease in EOAD.


Alzheimer Disease , Female , Humans , Male , Alzheimer Disease/pathology , Sex Characteristics , Atrophy , Magnetic Resonance Imaging/methods , Cognition , Biomarkers/cerebrospinal fluid
14.
J Neurosci Res ; 100(10): 1862-1875, 2022 10.
Article En | MEDLINE | ID: mdl-35766328

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.


Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Myelin Sheath , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Humans , Myelin Sheath/pathology
15.
J Alzheimers Dis ; 87(4): 1659-1669, 2022.
Article En | MEDLINE | ID: mdl-35723108

BACKGROUND: Early onset Alzheimer's disease (EOAD) represents a diagnostic challenge and is associated with a high diagnostic delay and misdiagnosis. OBJECTIVE: To describe clinical and pathological data from a pathologically confirmed EOAD cohort and evaluate evolving trends in clinical-pathological correlation accuracy. METHODS: Retrospective review of clinical and neuropathological data of pathologically confirmed EOAD patients (age at onset [AAO] < 60). Comparison between two periods: 1994- 2009 and 2010- 2018. RESULTS: Eighty brain donors were included. Mean AAO, age at death, and diagnostic delay was 55, 66, and 3 years, respectively. Twenty-nine percent had a nonamnestic presentation. Sixteen percent were given a non-AD initial clinical diagnosis (initial misdiagnosis) and 14% received a final misdiagnosis. Nonamnestic presentation patients received more misdiagnoses than amnestic presentation ones (39% versus 7% and 39% versus 3.5%, on initial and final misdiagnosis, respectively). When comparing both time periods, a trend towards a higher diagnostic accuracy in the 2010- 2018 period was observed, mainly on initial misdiagnosis in nonamnestic presentation patients (53% versus 13%, p = 0.069). Diagnostic delay was similar between both periods. Cerebral amyloid angiopathy (96%) and Lewy body co-pathology (55%) were very frequent, while limbic-predominant age-related TDP-43 encephalopathy pathologic changes were only present in 12.5%. CONCLUSION: In the last decade, there has been a trend towards improved diagnostic accuracy in EOAD, which might be explained by improved diagnostic criteria, increasing experience on EOAD and the beginning of the use of biomarkers, although diagnostic delay remains similar. Concomitant neuropathology was very frequent despite the relatively young age of brain donors.


Alzheimer Disease , Age of Onset , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Delayed Diagnosis , Humans , Lewy Bodies/pathology
16.
Antioxidants (Basel) ; 11(6)2022 Jun 08.
Article En | MEDLINE | ID: mdl-35740026

The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.

17.
Alzheimers Res Ther ; 14(1): 27, 2022 02 09.
Article En | MEDLINE | ID: mdl-35139897

BACKGROUND: Cortical mean diffusivity is a novel imaging metric sensitive to early changes in neurodegenerative syndromes. Higher cortical mean diffusivity values reflect microstructural disorganization and have been proposed as a sensitive biomarker that might antedate macroscopic cortical changes. We aimed to test the hypothesis that cortical mean diffusivity is more sensitive than cortical thickness to detect cortical changes in primary progressive aphasia (PPA). METHODS: In this multicenter, case-control study, we recruited 120 patients with PPA (52 non-fluent, 31 semantic, and 32 logopenic variants; and 5 GRN-related PPA) as well as 89 controls from three centers. The 3-Tesla MRI protocol included structural and diffusion-weighted sequences. Disease severity was assessed with the Clinical Dementia Rating scale. Cortical thickness and cortical mean diffusivity were computed using a surface-based approach. RESULTS: The comparison between each PPA variant and controls revealed cortical mean diffusivity increases and cortical thinning in overlapping regions, reflecting the canonical loci of neurodegeneration of each variant. Importantly, cortical mean diffusivity increases also expanded to other PPA-related areas and correlated with disease severity in all PPA groups. Cortical mean diffusivity was also increased in patients with very mild PPA when only minimal cortical thinning was observed and showed a good correlation with measures of disease severity. CONCLUSIONS: Cortical mean diffusivity shows promise as a sensitive biomarker for the study of the neurodegeneration-related microstructural changes in PPA.


Aphasia, Primary Progressive , Aphasia, Primary Progressive/diagnostic imaging , Case-Control Studies , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging
18.
J Neurol ; 269(5): 2573-2583, 2022 May.
Article En | MEDLINE | ID: mdl-34665329

BACKGROUND: MRI atrophy predicts cognitive status in AD. However, this relationship has not been investigated in early-onset AD (EOAD, < 65 years) patients with a biomarker-based diagnosis. METHODS: Forty eight EOAD (MMSE ≥ 15; A + T + N +) and forty two age-matched healthy controls (HC; A - T - N -) from a prospective cohort underwent full neuropsychological assessment, 3T-MRI scan and lumbar puncture at baseline. Participants repeated the cognitive assessment annually. We used linear mixed models to investigate whether baseline cortical thickness (CTh) or subcortical volume predicts two-year cognitive outcomes in the EOAD group. RESULTS: In EOAD, hemispheric CTh and ventricular volume at baseline were associated with global cognition, language and attentional/executive functioning 2 years later (p < 0.0028). Regional CTh was related to most cognitive outcomes (p < 0.0028), except verbal/visual memory subtests. Amygdalar volume was associated with letter fluency test (p < 0.0028). Hippocampal volume did not show significant associations. CONCLUSION: Baseline hemispheric/regional CTh, ventricular and amygdalar volume, but not the hippocampus, predict two-year cognitive outcomes in EOAD.


Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Atrophy/pathology , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Hippocampus/pathology , Humans , Language , Magnetic Resonance Imaging , Neuropsychological Tests , Prospective Studies
19.
Neuroimage Clin ; 32: 102804, 2021.
Article En | MEDLINE | ID: mdl-34474317

There is evidence of longitudinal atrophy in posterior brain areas in early-onset Alzheimer's disease (EOAD; aged < 65 years), but no studies have been conducted in an EOAD cohort with fluid biomarkers characterization. We used 3T-MRI and Freesurfer 6.0 to investigate cortical and subcortical gray matter loss at two years in 12 EOAD patients (A + T + N + ) compared to 19 controls (A-T-N-) from the Hospital Clínic Barcelona cohort. We explored group differences in atrophy patterns and we correlated atrophy and baseline CSF-biomarkers levels in EOAD. We replicated the correlation analyses in 14 EOAD (A + T + N + ) and 55 late-onset AD (LOAD; aged ≥ 75 years; A + T + N + ) participants from the Alzheimer's disease Neuroimaging Initiative. We found that EOAD longitudinal atrophy spread with a posterior-to-anterior gradient and beyond hippocampus/amygdala. In EOAD, higher initial CSF NfL levels correlated with higher ventricular volumes at baseline. On the other hand, higher initial CSF Aß42 levels (within pathological range) predicted higher rates of cortical loss in EOAD. In EOAD and LOAD subjects, higher CSF t-tau values at baseline predicted higher rates of subcortical atrophy. CSF p-tau did not show any significant correlation. In conclusion, posterior cortices, hippocampus and amygdala capture EOAD atrophy from early stages. CSF Aß42 might predict cortical thinning and t-tau/NfL subcortical atrophy.


Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Atrophy/pathology , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , tau Proteins
20.
JAMA Netw Open ; 4(3): e211290, 2021 03 01.
Article En | MEDLINE | ID: mdl-33704477

Importance: The presence of atrophy on magnetic resonance imaging can support the diagnosis of the behavioral variant of frontotemporal dementia (bvFTD), but reproducible measurements are lacking. Objective: To assess the diagnostic and prognostic utility of 6 visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index (MRPI). Design, Setting, and Participants: In this diagnostic/prognostic study, data from 235 patients with bvFTD and 225 age- and magnetic resonance imaging-matched control individuals from 3 centers were collected from December 1, 1998, to September 30, 2019. One hundred twenty-one participants with bvFTD had high confidence of frontotemporal lobar degeneration (FTLD) (bvFTD-HC), and 19 had low confidence of FTLD (bvFTD-LC). Blinded clinicians applied 6 previously validated VAS, and the MRPI was calculated with a fully automated approach. Cortical thickness and subcortical volumes were also measured for comparison. Data were analyzed from February 1 to June 30, 2020. Main Outcomes and Measures: The main outcomes of this study were bvFTD-HC or a neuropathological diagnosis of 4-repeat (4R) tauopathy and the clinical deterioration rate (assessed by longitudinal measurements of Clinical Dementia Rating Sum of Boxes). Measures of cerebral atrophy included VAS scores, the bvFTD atrophy score (sum of VAS scores in orbitofrontal, anterior cingulate, anterior temporal, medial temporal lobe, and frontal insula regions), the MRPI, and other computerized quantifications of cortical and subcortical volumes. The areas under the receiver operating characteristic curve (AUROC) were calculated for the differentiation of participants with bvFTD-HC and bvFTD-LC and controls. Linear mixed models were used to evaluate the ability of atrophy measures to estimate longitudinal clinical deterioration. Results: Of the 460 included participants, 296 (64.3%) were men, and the mean (SD) age was 62.6 (11.4) years. The accuracy of the bvFTD atrophy score for the differentiation of bvFTD-HC from controls (AUROC, 0.930; 95% CI, 0.903-0.957) and bvFTD-HC from bvFTD-LC (AUROC, 0.880; 95% CI, 0.787-0.972) was comparable to computerized measures (AUROC, 0.973 [95% CI, 0.954-0.993] and 0.898 [95% CI, 0.834-0.962], respectively). The MRPI was increased in patients with bvFTD and underlying 4R tauopathies compared with other FTLD subtypes (14.1 [2.0] vs 11.2 [2.6] points; P < .001). Higher bvFTD atrophy scores were associated with faster clinical deterioration in bvFTD (1.86-point change in Clinical Dementia Rating Sum of Boxes score per bvFTD atrophy score increase per year; 95% CI, 0.99-2.73; P < .001). Conclusions and Relevance: Based on these study findings, in bvFTD, VAS increased the diagnostic certainty of underlying FTLD, and the MRPI showed potential for the detection of participants with underlying 4R tauopathies. These widely available measures of atrophy can also be useful to estimate longitudinal clinical deterioration.


Brain/pathology , Clinical Deterioration , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Magnetic Resonance Imaging , Aged , Atrophy , Female , Frontotemporal Dementia/classification , Frontotemporal Dementia/complications , Humans , Longitudinal Studies , Male , Mental Disorders/etiology , Middle Aged , Prognosis
...