Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Haematologica ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899342

ABSTRACT

Hematological cancers are among the most common cancers in adults and children. Despite significant improvements in therapies, many patients still succumb to the disease. Therefore, novel therapies are needed. The Wiskott-Aldrich syndrome protein (WASp) family regulates actin assembly in conjunction with the Arp2/3 complex, a ubiquitous nucleation factor. WASp is expressed exclusively in hematopoietic cells and exists in two allosteric conformations: autoinhibited or activated. Here, we describe the development of EG-011, a first-in-class small molecule activator of the WASp auto-inhibited form. EG-011 possesses in vitro and in vivo anti-tumor activity as a single agent in lymphoma, leukemia, and multiple myeloma, including models of secondary resistance to PI3K, BTK, and proteasome inhibitors. The in vitro activity was confirmed in a lymphoma xenograft. Actin polymerization and WASp binding was demonstrated using multiple techniques. Transcriptome analysis highlighted homology with drugs-inducing actin polymerization.

2.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338881

ABSTRACT

The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.


Subject(s)
MicroRNAs , Neuroblastoma , Humans , MicroRNAs/genetics , Multiomics , Neuroblastoma/metabolism , Transcriptome , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Acta Neuropathol Commun ; 11(1): 183, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978570

ABSTRACT

Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome. Moreover, resistant MB cell response to a large library of compounds through a high-throughput screening (HTS), highlighted nucleoside metabolism as a relevant vulnerability of chemotolerant cells, with peculiar antimetabolites demonstrating increased efficacy against them and even synergism with conventional chemotherapeutics. Our results suggest that drug-resistant cells significantly rewire multiple cellular processes, allowing their adaptation to a chemotoxic environment, nevertheless exposing alternative actionable susceptibilities for their specific targeting.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Nucleosides/pharmacology , Nucleosides/therapeutic use , Proteomics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cell Line, Tumor
4.
J Enzyme Inhib Med Chem ; 38(1): 2270180, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37850364

ABSTRACT

A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.


Subject(s)
Antigens, Neoplasm , Carbonic Anhydrase II , Humans , Carbonic Anhydrase II/metabolism , Structure-Activity Relationship , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase I/metabolism , Protein Isoforms , Sulfanilamides , Carbonic Anhydrase Inhibitors/pharmacology , Molecular Structure
5.
Biochem Pharmacol ; 215: 115697, 2023 09.
Article in English | MEDLINE | ID: mdl-37481140

ABSTRACT

Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/metabolism , Cerebellar Neoplasms/metabolism , Hunger , Metabolic Networks and Pathways
6.
Eur J Med Chem ; 254: 115372, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37068384

ABSTRACT

Unsatisfactory outcomes for relapsed/refractory lymphoma patients prompt continuing efforts to develop new therapeutic strategies. Our previous studies on pyrrole-based anti-lymphoma agents led us to synthesize a new series of twenty-six pyrrolo[3',4':3,4]cyclohepta[1,2-d] [1,2]oxazole derivatives and study their antiproliferative effects against a panel of four non-Hodgkin lymphoma cell lines. Several candidates showed significant anti-proliferative effects, with IC50's reaching the sub-micromolar range in at least one cell line, with compound 3z demonstrating sub-micromolar growth inhibitory effects towards the entire panel. The VL51 cell line was the most sensitive, with an IC50 value of 0.10 µM for 3z. Our earlier studies had shown that tubulin was a prominent target of many of our oxazole derivatives. We therefore examined their effects on tubulin assembly and colchicine binding. While 3u and 3z did not appear to target tubulin, good activity was observed with 3d and 3p. Molecular docking and molecular dynamics simulations allowed us to rationalize the binding mode of the synthesized compounds toward tubulin. All ligands exhibited a better affinity for the colchicine site, confirming their specificity for this binding pocket. In particular, a better affinity and free energy of binding was observed for 3d and 3p. This result was confirmed by experimental data, indicating that, although both 3d and 3p significantly affected tubulin assembly, only 3d showed activity comparable to that of combretastatin A-4, while 3p was about 4-fold less active. Cell cycle analysis showed that compounds 3u and especially 3z induced a block in G2/M, a strong decrease in S phase even at low compound concentrations and apoptosis through the mitochondrial pathway. Thus, the mechanism of action of 3u and 3z remains to be elucidated. Very high selectivity toward cancer cells and low toxicity in human peripheral blood lymphocytes were observed, highlighting the good potential of these agents in cancer therapy and encouraging further exploration of this compound class to obtain new small molecules as effective lymphoma treatments.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , Tubulin/metabolism , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Oxazoles/pharmacology , Oxazoles/chemistry , Cell Proliferation , Tubulin Modulators/pharmacology , Colchicine/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Structure-Activity Relationship
7.
Transl Res ; 251: 41-53, 2023 01.
Article in English | MEDLINE | ID: mdl-35788055

ABSTRACT

We previously demonstrated that Annexin A2 (ANXA2) is a pivotal mediator of the pro-oncogenic features displayed by glioblastoma (GBM) tumors, the deadliest adult brain malignancies, being involved in cell stemness, proliferation and invasion, thus negatively impacting patient prognosis. Based on these results, we hypothesized that compounds able to revert ANXA2-dependent transcriptional features could be exploited as reliable treatments to inhibit GBM cell aggressiveness by hampering their proliferative and migratory potential. Transcriptional signatures obtained by the modulation of ANXA2 activity/levels were functionally mapped through the QUADrATiC bioinformatic tool for compound identification. Selected compounds were screened by cell proliferation and migration assays in primary GBM cells, and we identified Homoharringtonine (HHT) as a potent inhibitor of GBM cell motility and proliferation, without affecting their viability. A further molecular characterization of the effects displayed by HHT, confirmed its ability to inhibit a transcriptional program involved in cell migration and invasion. Moreover, we demonstrated that the multiple antitumoral effects displayed by HHT are correlated to the inhibition of a platelet derived growth factor receptor α (PDGFRα)-dependent intracellular signaling through the impairment of Signal transducer and activator of transcription 3 (STAT3) and Ras homolog family member A (RhoA) axes. Our results demonstrate that HHT may act as a potent inhibitor of cancer cell proliferation and invasion in GBM, by hampering multiple PDGFRα-dependent oncogenic signals transduced through the STAT3 and RhoA intracellular components, finally suggesting its potential transferability for achieving an effective impairment of peculiar GBM hallmarks.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Homoharringtonine/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/pharmacology , Gene Expression Regulation, Neoplastic , Cell Proliferation , Brain Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Cell Movement , Cell Line, Tumor
8.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015179

ABSTRACT

A further investigation aiming to generate new potential antitumor agents led us to synthesize a new series of twenty-two compounds characterized by the presence of the 7-(3',4',5'-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine pharmacophore modified at its 2-position. Among the synthesized compounds, three were significantly more active than the others. These bore the substituents p-toluidino (3d), p-ethylanilino (3h) and 3',4'-dimethylanilino (3f), and these compounds had IC50 values of 30-43, 160-240 and 67-160 nM, respectively, on HeLa, A549 and HT-29 cancer cells. The p-toluidino derivative 3d was the most potent inhibitor of tubulin polymerization (IC50: 0.45 µM) and strongly inhibited the binding of colchicine to tubulin (72% inhibition), with antiproliferative activity superior to CA-4 against A549 and HeLa cancer cell lines. In vitro investigation showed that compound 3d was able to block treated cells in the G2/M phase of the cell cycle and to induce apoptosis following the intrinsic pathway, further confirmed by mitochondrial depolarization and caspase-9 activation. In vivo experiments conducted on the zebrafish model showed good activity of 3d in reducing the mass of a HeLa cell xenograft. These effects occurred at nontoxic concentrations to the animal, indicating that 3d merits further developmental studies.

9.
Pharmaceutics ; 14(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35745764

ABSTRACT

Two different series of fifty-two compounds, based on 3',4',5'-trimethoxyaniline (7a-ad) and variably substituted anilines (8a-v) at the 7-position of the 2-substituted-[1,2,4]triazolo [1,5-a]pyrimidine nucleus, had moderate to potent antiproliferative activity against A549, MDA-MB-231, HeLa, HT-29 and Jurkat cancer cell lines. All derivatives with a common 3-phenylpropylamino moiety at the 2-position of the triazolopyrimidine scaffold and different halogen-substituted anilines at its 7-position, corresponding to 4'-fluoroaniline (8q), 4'-fluoro-3'-chloroaniline (8r), 4'-chloroaniline (8s) and 4'-bromoaniline (8u), displayed the greatest antiproliferative activity with mean IC50's of 83, 101, 91 and 83 nM, respectively. These four compounds inhibited tubulin polymerization about 2-fold more potently than combretastatin A-4 (CA-4), and their activities as inhibitors of [3H]colchicine binding to tubulin were similar to that of CA-4. These data underlined that the 3',4',5'-trimethoxyanilino moiety at the 7-position of the [1,2,4]triazolo [1,5-a]pyrimidine system, which characterized compounds 7a-ad, was not essential for maintaining potent antiproliferative and antitubulin activities. Compounds 8q and 8r had high selectivity against cancer cells, and their interaction with tubulin led to the accumulation of HeLa cells in the G2/M phase of the cell cycle and to apoptotic cell death through the mitochondrial pathway. Finally, compound 8q significantly inhibited HeLa cell growth in zebrafish embryos.

10.
Cancers (Basel) ; 14(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35454804

ABSTRACT

Despite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the ß-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features. Since histone deacetylase inhibitors (HDI) have been reported to strongly reduce TCF4 levels in colon cancer cells, we hypothesized that they could also exert a similar therapeutic action in GBM. Here, we treated primary GBM cultures with Trichostatin-A and Vorinostat, demonstrating their ability to strongly suppress the Wnt-dependent pathways; thus, promoting CSC differentiation and concomitantly impairing GBM cell viability and proliferation. More interestingly, analysis of their molecular effects suggested a prominent HDI action against GBM cell motility/migration, which we demonstrated to rely on the inhibition of the RhoA-GTPase and interferon intracellular cascades. Our results suggest HDI as potential therapeutic agents in GBM, through their action on multiple cancer hallmarks.

11.
Eur J Med Chem ; 235: 114292, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35339838

ABSTRACT

Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Apoptosis , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mutation , Protein Kinase Inhibitors/chemistry , fms-Like Tyrosine Kinase 3/genetics
12.
Eur J Med Chem ; 231: 114147, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35114540

ABSTRACT

A novel series of twenty-seven cinnamides constituted by cinnamic acid derivatives liked to 1-aryl piperazines were synthesized and evaluated for their potential inhibitory diphenolase activity of mushroom tyrosinase. Among them, the presence of a 3-chloro-4-fluorophenyl moiety at the N-1 position of piperazine ring was essential for a potent tyrosinase inhibitory effect, with the 3-nitrocinnamoyl (19p) and 2-chloro-3-methoxycinnamoyl (19t) derivatives as the most potent compounds of the series, with IC50 of 0.16 and 0.12 µM, respectively, resulting much active than kojic acid, whose IC50 value was 17.76 µM. In general, all compounds characterized by the presence of a 1-(3-chloro-4-fluorophenyl)piperazine moiety showed an excellent potency, and the nature, position and number of the substituents on the aryl of the cinnamic acid did not affect significantly the anti-tyrosinase activity. The molecular docking to the active site of the enzyme has been also performed to investigate the nature of enzyme-inhibitor interactions. Furthermore, for selected highly active compounds, their ability to inhibit melanogenesis in the A375 human melanoma cells and in vivo zebrafish model was also evaluated. One of the most potent compounds of series (19t) significantly reduced the pigmentation of zebrafish at 50 µM, unfortunately showing 100% mortality in the Fish Embryo Acute Toxicity (FET) test at the same concentration, Moreover, the zebrafish assay reveals that also compound 19r (IC50:0.51 µM against mushroom tyrosinase) effectively reduces melanogenesis with no acute toxicity effects and it could be proposed as potential candidate to treat tyrosinase-mediated hyperpigmentation.


Subject(s)
Agaricales , Monophenol Monooxygenase , Animals , Cinnamates , Enzyme Inhibitors/chemistry , Humans , Melanins , Molecular Docking Simulation , Zebrafish
13.
Bioorg Chem ; 112: 104919, 2021 07.
Article in English | MEDLINE | ID: mdl-33957538

ABSTRACT

Many clinically used agents active in cancer chemotherapy exert their activity through the induction of cell death (apoptosis) by targeting microtubules, altering protein function or inhibiting DNA synthesis. The benzo[b]thiophene scaffold holds a pivotal place as a pharmacophore for the development of anticancer agents, and, in addition, this scaffold has many pharmacological activities. We have developed a flexible method for the construction of a new series of 2-aryl-3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophenes as potent antiproliferative agents, giving access to a wide range of substitution patterns at the 2-position of the 6-methoxybenzo[b]thiophene common intermediate. In the present study, all the synthesized compounds retained the 3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophene moiety, and the structure-activity relationship was examined by modification of the aryl group at its 2-position with electron-withdrawing (F) or electron-releasing (alkyl and alkoxy) groups. We found that small substituents, such as fluorine or methyl, could be placed in the para-position of the 2-phenyl ring, and these modifications only slightly reduced antiproliferative activity relative to the unsubstituted 2-phenyl analogue. Compounds 3a and 3b, bearing the phenyl and para-fluorophenyl at the 2-position of the 6-methoxybenzo[b]thiophene nucleus, respectively, exhibited the greatest antiproliferative activity among the tested compounds. The treatment of both Caco2 (not metastatic) and HCT-116 (metastatic) colon carcinoma cells with 3a or 3b triggered a significant induction of apoptosis as demonstrated by the increased expression of cleaved-poly(ADP-ribose) polymerase (PARP), receptor-interacting protein (RIP) and caspase-3 proteins. The same effect was not observed with non-transformed colon 841 CoN cells. A potential additional effect during mitosis for 3a in metastatic cells and for 3b in non-metastatic cells was also observed.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Thiophenes/pharmacology , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
14.
Eur J Med Chem ; 216: 113331, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33721670

ABSTRACT

Protein kinase CK1δ expression and activity is involved in different pathological situations that include neuroinflammatory and neurodegenerative diseases. For this reason, protein kinase CK1δ has become a possible therapeutic target for these conditions. 5,6-fused bicyclic heteroaromatic systems that resemble adenine of ATP represent optimal scaffolds for the development of a new class of ATP competitive CK1δ inhibitors. In particular, a new series of [1,2,4]triazolo[1,5-c]pyrimidines and [1,2,4]triazolo[1,5-a][1,3,5]triazines was developed. Some crucial interactors have been identified, such as the presence of a free amino group able to interact with the residues of the hinge region at the 5- and 7- positions of the [1,2,4]triazolo[1,5-c]pyrimidine and [1,2,4]triazolo[1,5-a][1,3,5]triazine scaffolds, respectively; or the presence of a 3-hydroxyphenyl or 3,5-dihydroxyphenyl moiety at the 2- position of both nuclei. Molecular modeling studies identified the key interactions involved in the inhibitor-protein recognition process that appropriately fit with the outlined structure-activity relationship. Considering the fact that the CK1 protein kinase is involved in various pathologies in particular of the central nervous system, the interest in the development of new inhibitors permeable to the blood-brain barrier represents today an important goal in the pharmaceutical field. The best potent compound of the series is the 5-(7-amino-5-(benzylamino)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-2-yl)benzen-1,3-diol (compound 51, IC50 = 0.18 µM) that was predicted to have an intermediate ability to cross the membrane in our in vitro assay and represents an optimal starting point to both studies the therapeutic value of protein kinase CK1δ inhibition and to develop new more potent derivatives.


Subject(s)
Casein Kinase Idelta/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Triazoles/chemistry , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Casein Kinase Idelta/metabolism , Cell Line , Cell Survival/drug effects , Drug Design , Humans , Kinetics , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Static Electricity , Structure-Activity Relationship , Thermodynamics , Triazines/chemistry , Triazoles/metabolism , Triazoles/pharmacology
15.
Eur J Med Chem ; 214: 113229, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33550186

ABSTRACT

Three different series of cis-restricted analogues of combretastatin A-4 (CA-4), corresponding to thirty-nine molecules that contained a pyrrole nucleus interposed between the two aryl rings, were prepared by a palladium-mediated coupling approach and evaluated for their antiproliferative activity against six human cancer cell lines. In the two series of 1,2-diaryl pyrrole derivatives, results suggested that the presence of the 3',4',5'-trimethoxyphenyl moiety at the N-1 position of the pyrrole ring was more favorable for antiproliferative activity. In the series of 3,4-diarylpyrrole analogues, three compounds (11i-k) exhibited maximal antiproliferative activity, showing excellent antiproliferative activity against the CA-4 resistant HT-29 cells. Inhibition of tubulin polymerization of selected 1,2 pyrrole derivatives (9a, 9c, 9o and 10a) was similar to that observed with CA-4, while the isomeric 3,4-pyrrole analogues 11i-k were generally from 1.5- to 2-fold more active than CA-4. Compounds 11j and 11k were the only compounds that showed activity as inhibitors of colchicine binding comparable to that CA-4. Compound 11j had biological properties consistent with its intracellular target being tubulin. This compound was able to block the cell cycle in metaphase and to induce significant apoptosis at a concentration of 25 nM, following the mitochondrial pathway, with low toxicity for normal cells. More importantly, compound 11j exerted activity in vivo superior to that of CA-4P, being able to significantly reduce tumor growth in a syngeneic murine tumor model even at the lower dose tested (5.0 mg/kg).


Subject(s)
Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Colchicine/antagonists & inhibitors , Drug Discovery , Pyrroles/pharmacology , Tubulin Modulators/pharmacology , Antimitotic Agents/chemical synthesis , Antimitotic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polymerization/drug effects , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
16.
Eur J Med Chem ; 212: 113122, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33401199

ABSTRACT

A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.


Subject(s)
Isoindoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Apoptosis/drug effects , Dose-Response Relationship, Drug , HeLa Cells , Humans , Isoindoles/chemical synthesis , Isoindoles/chemistry , Models, Molecular , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
17.
Org Biomol Chem ; 19(4): 878-890, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33410854

ABSTRACT

A series of ten 2,7- and 2,8-diarylquinolizinium derivatives was synthesized and their DNA-binding and cytotoxic properties were investigated. Except for one nitro-substituted derivative all tested diarylquinolizinium ions bind to DNA with sufficient affinity (2 × 104 M-1-2 × 105 M-1). It was shown with photometric, fluorimetric and polarimetric titrations as well as with flow-LD analysis that the ligands bind mainly by intercalation to duplex DNA, however, depending on the ligand-DNA ratio, groove binding and backbone association were also observed with some derivatives. The biological activity was further investigated with tests of cytotoxicity and antiproliferative properties towards non-tumor cells and selected cancer cells, along with cell cycle analysis and an annexin-V assay. Notably, substrates that carry donor-functionalities in the 4-position of the phenyl substituents revealed a strong, and in some cases selective, antiproliferative activity as quantified by the growth inhibition, GI50, at very low micromolar and even submicromolar level both in leukemia and solid tumors.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , DNA/metabolism , Drug Design , Quinolizines/chemical synthesis , Quinolizines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , DNA/chemistry , Humans , Ligands , Models, Molecular , Nucleic Acid Conformation , Quinolizines/chemistry , Quinolizines/metabolism
18.
J Med Chem ; 63(20): 12023-12042, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32986419

ABSTRACT

A new class of pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles was synthesized for the treatment of hyperproliferative pathologies, including neoplasms. The new compounds were screened in the 60 human cancer cell lines of the NCI drug screen and showed potent activity with GI50 values reaching the nanomolar level, with mean graph midpoints of 0.08-0.41 µM. All compounds were further tested on six lymphoma cell lines, and eight showed potent growth inhibitory effects with IC50 values lower than 500 nM. Mechanism of action studies showed the ability of the new [1,2]oxazoles to arrest cells in the G2/M phase in a concentration dependent manner and to induce apoptosis through the mitochondrial pathway. The most active compounds inhibited tubulin polymerization, with IC50 values of 1.9-8.2 µM, and appeared to bind to the colchicine site. The G2/M arrest was accompanied by apoptosis, mitochondrial depolarization, generation of reactive oxygen species, and PARP cleavage.


Subject(s)
Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Mitosis/drug effects , Oxazoles/pharmacology , Antimitotic Agents/chemical synthesis , Antimitotic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Structure-Activity Relationship
19.
J Nat Prod ; 83(8): 2434-2446, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32790992

ABSTRACT

The expression of multidrug resistance P-glycoprotein (P-gp) by cancer cells represents one of the major drawbacks to successful cancer therapy. Accordingly, the development of drugs that inhibit the activity of this transporter remains a major challenge in cancer drug discovery. In this context, several new ecdysteroid derivatives have been synthesized and evaluated as P-gp inhibitors. Two of them (compounds 9 and 14) were able to resensitize CEMVbl100 and LoVoDoxo resistant cell lines to vinblastine and doxorubicin, respectively. Indeed, both compounds 9 and 14 increased the cellular accumulation of rhodamine 123 in cells expressing P-gp and stimulated basal P-glycoprotein-ATPase activity at a 1 µM concentration, demonstrating their interference with the transport of other substrates in a competitive mode. Moreover, in a medulloblastoma cell line (DAOY), compounds 9 and 14 reduced the side population representing cancer stem cells, which are characterized by a high expression of ABC drug transporters. Further, in DAOY cells, the same two compounds synergized with cisplatin and vincristine, two drugs used commonly in the therapy of medulloblastoma. Molecular docking studies on the homology-modeled structure of the human P-glycoprotein provided a rationale for the biological results, validating the binding mode within the receptor site, in accordance with lipophilicity data and observed structure-activity relationship information. Altogether, the present results endorse these derivatives as promising P-gp inhibitors, and they may serve as candidates to reverse drug resistance in cancer cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/physiology , Drug Resistance, Neoplasm/drug effects , Ecdysteroids/chemistry , Ecdysteroids/pharmacology , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/physiology , Humans , Rhodamine 123/metabolism , Structure-Activity Relationship
20.
Eur J Med Chem ; 200: 112448, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32417696

ABSTRACT

A new class of inhibitors of tubulin polymerization based on the 2-amino-3-(3',4',5'-trimethoxybenzoyl)benzo[b]furan molecular scaffold was synthesized and evaluated for in vivo and in vitro biological activity. These derivatives were synthesized with different electron-releasing or electron-withdrawing substituents at one of the C-4 through C-7 positions. Methoxy substitution and location on the benzene part of the benzo[b]furan ring played an important role in affecting antiproliferative activity, with the greatest activity occurring with the methoxy group at the C-6 position, the least with the substituent at C-4. The same effect was also observed with ethoxy, methyl or bromine at the C-6 position of the benzo[b]furan skeleton, with the 6-ethoxy-2-amino-3-(3',4',5'-trimethoxybenzoyl)benzo[b]furan derivative 4f as the most promising compound of the series. This compound showed remarkable antiproliferative activity (IC50: 5 pM) against the Daoy medulloblastoma cell line, and 4f was nearly devoid of toxicity on healthy human lymphocytes and astrocytes. The potent antiproliferative activity of 4f was derived from its inhibition of tubulin polymerization by binding to the colchicine site. The compound was also examined for in vivo activity, showing higher potency at 15 mg/kg compared with the reference compound combretastatin A-4 phosphate at 30 mg/kg against a syngeneic murine mammary tumor.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Furans/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Furans/chemical synthesis , Furans/chemistry , HeLa Cells , Healthy Volunteers , Humans , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...