Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 79
2.
Cancers (Basel) ; 15(2)2023 Jan 11.
Article En | MEDLINE | ID: mdl-36672409

Drug resistance is a long-standing impediment to effective systemic cancer therapy and acquired drug resistance is a growing problem for molecularly-targeted therapeutics that otherwise have shown unprecedented successes in disease control. The hepatocyte growth factor (HGF)/Met receptor pathway signaling is frequently involved in cancer and has been a subject of targeted drug development for nearly 30 years. To anticipate and study specific resistance mechanisms associated with targeting this pathway, we engineered resistance to the HGF-neutralizing antibody rilotumumab in glioblastoma cells harboring autocrine HGF/Met signaling, a frequent abnormality of this brain cancer in humans. We found that rilotumumab resistance was acquired through an unusual mechanism comprising dramatic HGF overproduction and misfolding, endoplasmic reticulum (ER) stress-response signaling and redirected vesicular trafficking that effectively sequestered rilotumumab and misfolded HGF from native HGF and activated Met. Amplification of MET and HGF genes, with evidence of rapidly acquired intron-less, reverse-transcribed copies in DNA, was also observed. These changes enabled persistent Met pathway activation and improved cell survival under stress conditions. Point mutations in the HGF pathway or other complementary or downstream growth regulatory cascades that are frequently associated with targeted drug resistance in other prevalent cancer types were not observed. Although resistant cells were significantly more malignant, they retained sensitivity to Met kinase inhibition and acquired sensitivity to inhibition of ER stress signaling and cholesterol biosynthesis. Defining this mechanism reveals details of a rapidly acquired yet highly-orchestrated multisystem route of resistance to a selective molecularly-targeted agent and suggests strategies for early detection and effective intervention.

3.
Cancers (Basel) ; 14(24)2022 Dec 14.
Article En | MEDLINE | ID: mdl-36551660

Two vascular endothelial growth factor (VEGF) receptors, FLT-1 and KDR, are expressed preferentially in proliferating endothelium. There is increasing evidence that recombinant, soluble VEGF receptor domains interfering with VEGF signaling may inhibit in vivo neoangiogenesis, tumor growth and metastatic spread. We hypothesized that a soluble form of FLT-1 receptor (sFLT-1) could inhibit the growth of pre-established tumors via an anti-angiogenic mechanism. A replication-deficient adenovirus (Ad) vector carrying the sflt-1 cDNA (Adsflt) was used to overexpress the sFLT-1 receptor in a breast cancer animal model. MCF-7 cells, which produce VEGF, were used to establish solid tumors in the mammary fat pads of female nude mice. After six weeks, tumors were injected either with Adsflt or a negative control virus (AdCMV.ßgal). After six months, average tumor volume in the Adsflt-infected group (33 ± 22 mm3) decreased by 91% relative to that of the negative control group (388 ± 94 mm3; p < 0.05). Moreover, 10 of 15 Adsflt-infected tumors exhibited complete regression. The vascular density of Adsflt-infected tumors was reduced by 50% relative to that of negative controls (p < 0.05), which is consistent with sFLT-1-mediated tumor regression through an anti-angiogenic mechanism. Moreover, cell necrosis and fibrosis associated with long-term regression of Adsflt−infected tumors were preceded by apoptosis of tumor vascular endothelial cells. Mice treated with Adsflt intratumorally showed no delay in the healing of cutaneous wounds, providing preliminary evidence that Ad-mediated sFLT-1 overexpression may be an effective anti-angiogenic therapy for cancer without the risk of systemic anti-angiogenic effects.

5.
J Exp Clin Cancer Res ; 41(1): 208, 2022 Jun 27.
Article En | MEDLINE | ID: mdl-35754026

BACKGROUND: There is no universally accepted treatment for patients with advanced papillary renal cell carcinoma (PRCC). The presence of activating mutations in MET, as well as gain of chromosome 7, where the MET gene is located, are the most common genetic alterations associated with PRCC, leading to the clinical evaluation of MET tyrosine kinase inhibitors (TKIs) in this cancer. However, TKIs targeting MET selectively, as well as multitargeted TKIs with activity against MET demonstrate modest efficacy in PRCC and primary and secondary treatment failure is common; other approaches are urgently needed to improve outcomes in these patients. METHODS: High throughput screening with small molecule libraries identified HSP90 inhibitors as agents of interest based on antitumor activity against patient derived PRCC cell lines. We investigated the activity of the orally available HSP90 inhibitor, SNX2112 in vitro, using 2D/3D PRCC cell culture models and in vivo, in mice tumor xenograft models. The molecular pathways mediating antitumor activity of SNX2112 were assessed by Western blot analysis, Flow cytometry, RNA-seq analysis, Real Time qPCR and imaging approaches. RESULTS: SNX2112 significantly inhibited cellular proliferation, induced G2/M cell cycle arrest and apoptosis in PRCC lines overexpressing MET. In contrast to TKIs targeting MET, SNX2112 inhibited both MET and known downstream mediators of MET activity (AKT, pAKT1/2 and pERK1/2) in PRCC cell lines. RNAi silencing of AKT1/2 or ERK1/2 expression significantly inhibited growth in PRCC cells. Furthermore, SNX2112 inhibited a unique set of E2F and MYC targets and G2M-associated genes. Interestingly, interrogation of the TCGA papillary RCC cohort revealed that these genes were overexpressed in PRCC and portend a poor prognosis. Finally, SNX-2112 demonstrated strong antitumor activity in vivo and prolonged survival of mice bearing human PRCC xenograft. CONCLUSIONS: These results demonstrate that HSP90 inhibition is associated with potent activity in PRCC, and implicate the PI3K/AKT and MEK/ERK1/2 pathways as important mediators of tumorigenesis. These data also provide the impetus for further clinical evaluation of HSP90, AKT, MEK or E2F pathway inhibitors in PRCC.


Antineoplastic Agents , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , HSP90 Heat-Shock Proteins/genetics , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
6.
Clin Cancer Res ; 28(7): 1353-1362, 2022 04 01.
Article En | MEDLINE | ID: mdl-35031545

PURPOSE: This study investigated the efficacy and tolerability of cabozantinib plus nivolumab (CaboNivo) in patients with metastatic urothelial carcinoma (mUC) that progressed on checkpoint inhibition (CPI). PATIENTS AND METHODS: A phase I expansion cohort of patients with mUC who received prior CPI was treated with cabozantinib 40 mg/day and nivolumab 3 mg/kg every 2 weeks until disease progression/unacceptable toxicity. The primary goal was objective response rate (ORR) per RECIST v.1.1. Secondary objectives included progression-free survival (PFS), duration of response (DoR), overall survival (OS), safety, and tolerability. RESULTS: Twenty-nine out of 30 patients enrolled were evaluable for efficacy. Median follow-up was 22.2 months. Most patients (86.7%) received prior chemotherapy and all patients received prior CPI (median seven cycles). ORR was 16.0%, with one complete response and three partial responses (PR). Among 4 responders, 2 were primary refractory, 1 had a PR, and 1 had stable disease on prior CPI. Median DoR was 33.5 months [95% confidence interval (CI), 3.7-33.5], median PFS was 3.6 months (95% CI, 2.1-5.5), and median OS was 10.4 months (95% CI, 5.8-19.5). CaboNivo decreased immunosuppressive subsets such as regulatory T cells (Tregs) and increased potential antitumor immune subsets such as nonclassical monocytes and effector T cells. A lower percentage of monocytic myeloid-derived suppressor cells (M-MDSC) and polymorphonuclear MDSCs, lower CTLA-4 and TIM-3 expression on Tregs, and higher effector CD4+ T cells at baseline were associated with better PFS and/or OS. CONCLUSIONS: CaboNivo was clinically active, well tolerated, and favorably modulated peripheral blood immune subsets in patients with mUC refractory to CPI.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Anilides , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Transitional Cell/drug therapy , Humans , Immune Checkpoint Inhibitors , Nivolumab , Pyridines , Urinary Bladder Neoplasms/drug therapy
8.
PLoS One ; 16(7): e0241766, 2021.
Article En | MEDLINE | ID: mdl-34292953

Comprehensive characterizations of bladder cancer (BCa) have established molecular phenotype classes with distinct alterations and survival trends. Extending these studies within the tyrosine kinase (TK) family to identify disease drivers could improve our use of TK inhibitors to treat specific patient groups or individuals. We examined the expression distribution of TKs as a class (n = 89) in The Cancer Genome Atlas (TCGA) muscle invasive BCa data set (n >400). Patient profiles of potentially oncogenic alterations (overexpression and/or amplification) clustered TKs into 3 groups; alterations of group 1 and 3 TKs were associated with significantly worse patient survival relative to those without alterations. Many TK pathways induce epithelial-to-mesenchymal transition (EMT), which promotes tumor invasiveness and metastasis. Overexpression and/or amplification among 9 EMT transcriptional activators occurred in 43% of TCGA cases. Co-occurring alterations of TKs and EMT transcriptional activators involved most group 1 TKs; 24% of these events were associated with significantly worse patient survival. Co-occurring alterations of receptor TKs and their cognate ligands occurred in 16% of TCGA cases and several BCa-derived cell lines. Suppression of GAS6, MST1 or CSF1, or their respective receptors (AXL, MST1R and CSF1R), in BCa cell lines was associated with decreased receptor activation, cell migration, cell proliferation and anchorage independent cell growth. These studies reveal the patterns and prevalence of potentially oncogenic TK pathway-related alterations in BCa and identify specific alterations associated with reduced BCa patient survival. Detection of these features in BCa patients could better inform TK inhibitor use and improve clinical outcomes.


Autocrine Communication , Receptor Protein-Tyrosine Kinases/metabolism , Urinary Bladder Neoplasms/pathology , Animals , Cell Line, Tumor , Databases, Factual , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Mice , Neoplasm Invasiveness , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Transplantation, Heterologous , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/mortality , Axl Receptor Tyrosine Kinase
9.
Invest New Drugs ; 39(6): 1577-1586, 2021 12.
Article En | MEDLINE | ID: mdl-34180036

The vascular endothelial growth factor (VEGF)/VEGFR and hepatocyte growth factor (HGF)/c-MET signaling pathways act synergistically to promote angiogenesis. Studies indicate VEGF inhibition leads to increased levels of phosphorylated c-MET, bypassing VEGF-mediated angiogenesis and leading to chemoresistance. We conducted a phase 1 clinical trial with 32 patients with refractory solid tumors to evaluate the safety, pharmacokinetics, and pharmacodynamics of combinations of VEGF-targeting pazopanib and the putative c-MET inhibitor ARQ197 (tivantinib) at 5 dose levels (DLs). Patients either took pazopanib and tivantinib from treatment initiation (escalation phase) or pazopanib alone for 7 days, with paired tumor sampling, prior to starting combination treatment (expansion phase). Hypertension was the most common adverse event. No more than 1 dose limiting toxicity (DLT) occurred at any DL, so the maximum tolerated dose (MTD) was not determined; DL5 (800 mg pazopanib daily and 360 mg tivantinib BID) was used during the expansion phase. Twenty of 31 evaluable patients achieved stable disease lasting up to 22 cycles. Circulating VEGF, VEGFR2, HGF, and c-MET levels were assessed, and only VEGF levels increased. Tumor c-MET levels (total and phosphorylated) were determined in paired biopsies before and after 7 days of pazopanib treatment. Total intact c-MET decreased in 6 of 7 biopsy pairs, in contrast to previously reported c-MET elevation in response to VEGF inhibition. These results are discussed in the context of our previously reported analysis of epithelial-mesenchymal transition in these tumors.


Angiogenesis Inhibitors/therapeutic use , Indazoles/therapeutic use , Neoplasms/drug therapy , Pyrimidines/therapeutic use , Pyrrolidinones/therapeutic use , Quinolines/therapeutic use , Sulfonamides/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Area Under Curve , Dose-Response Relationship, Drug , Drug Administration Schedule , Hepatocyte Growth Factor/metabolism , Humans , Indazoles/administration & dosage , Indazoles/adverse effects , Indazoles/pharmacokinetics , Maximum Tolerated Dose , Middle Aged , Neoplasms/pathology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Pyrrolidinones/administration & dosage , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Quinolines/administration & dosage , Quinolines/adverse effects , Quinolines/pharmacokinetics , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Sulfonamides/pharmacokinetics , Vascular Endothelial Growth Factor A/drug effects
10.
Clin Cancer Res ; 27(5): 1391-1398, 2021 03 01.
Article En | MEDLINE | ID: mdl-33262136

PURPOSE: Circulating tumor cells (CTC) are under investigation as a minimally invasive liquid biopsy that may improve risk stratification and treatment selection. CTCs uniquely allow for digital pathology of individual malignant cell morphology and marker expression. We compared CTC features and T-cell counts with survival endpoints in a cohort of patients with metastatic genitourinary cancer treated with combination immunotherapy. EXPERIMENTAL DESIGN: Markers evaluated included pan-CK/CD45/PD-L1/DAPI for CTCs and CD4/CD8/Ki-67/DAPI for T cells. ANOVA was used to compare CTC burden and T-cell populations across timepoints. Differences in survival and disease progression were evaluated using the maximum log-rank test. RESULTS: From December 2016 to January 2019, 183 samples from 81 patients were tested. CTCs were found in 75% of patients at baseline. CTC burden was associated with shorter overall survival (OS) at baseline (P = 0.022), but not on-therapy. Five morphologic subtypes were detected, and the presence of two specific subtypes with unique cellular features at baseline and on-therapy was associated with worse OS (0.9-2.3 vs. 28.2 months; P < 0.0001-0.013). Increasing CTC heterogeneity on-therapy had a trend toward worse OS (P = 0.045). PD-L1+ CTCs on-therapy were associated with worse OS (P < 0.01, cycle 2). Low baseline and on-therapy CD4/CD8 counts were also associated with poor OS and response category. CONCLUSIONS: Shorter survival may be associated with high CTC counts at baseline, presence of specific CTC morphologic subtypes, PD-L1+ CTCs, and low %CD4/8 T cells in patients with metastatic genitourinary cancer. A future study is warranted to validate the prognostic utility of CTC heterogeneity and detection of specific CTC morphologies.


Biomarkers, Tumor/analysis , Immunotherapy/methods , Neoplastic Cells, Circulating/pathology , T-Lymphocytes/immunology , Urogenital Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Metastasis , Prognosis , Retrospective Studies , Survival Rate , T-Lymphocytes/classification , Urogenital Neoplasms/immunology , Urogenital Neoplasms/therapy , Young Adult
11.
J Clin Oncol ; 38(31): 3672-3684, 2020 11 01.
Article En | MEDLINE | ID: mdl-32915679

PURPOSE: We assessed the safety and efficacy of cabozantinib and nivolumab (CaboNivo) and CaboNivo plus ipilimumab (CaboNivoIpi) in patients with metastatic urothelial carcinoma (mUC) and other genitourinary (GU) malignances. PATIENTS AND METHODS: Patients received escalating doses of CaboNivo or CaboNivoIpi. The primary objective was to establish a recommended phase II dose (RP2D). Secondary objectives included objective response rate (ORR), progression-free survival (PFS), duration of response (DoR), and overall survival (OS). RESULTS: Fifty-four patients were enrolled at eight dose levels with a median follow-up time of 44.6 months; data cutoff was January 20, 2020. Grade 3 or 4 treatment-related adverse events (AEs) occurred in 75% and 87% of patients treated with CaboNivo and CaboNivoIpi, respectively, and included fatigue (17% and 10%, respectively), diarrhea (4% and 7%, respectively), and hypertension (21% and 10%, respectively); grade 3 or 4 immune-related AEs included hepatitis (0% and 13%, respectively) and colitis (0% and 7%, respectively). The RP2D was cabozantinib 40 mg/d plus nivolumab 3 mg/kg for CaboNivo and cabozantinib 40 mg/d, nivolumab 3 mg/kg, and ipilimumab 1 mg/kg for CaboNivoIpi. ORR was 30.6% (95% CI, 20.0% to 47.5%) for all patients and 38.5% (95% CI, 13.9% to 68.4%) for patients with mUC. Median DoR was 21.0 months (95% CI, 5.4 to 24.1 months) for all patients and not reached for patients with mUC. Median PFS was 5.1 months (95% CI, 3.5 to 6.9 months) for all patients and 12.8 months (95% CI, 1.8 to 24.1 months) for patients with mUC. Median OS was 12.6 months (95% CI, 6.9 to 18.8 months) for all patients and 25.4 months (95% CI, 5.7 to 41.6 months) for patients with mUC. CONCLUSION: CaboNivo and CaboNivoIpi demonstrated manageable toxicities with durable responses and encouraging survival in patients with mUC and other GU tumors. Multiple phase II and III trials are ongoing for these combinations.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Urogenital Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Anilides/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , B7-H1 Antigen/metabolism , Carcinoma, Transitional Cell/secondary , Colitis/chemically induced , Diarrhea/chemically induced , Epithelial Cell Adhesion Molecule/metabolism , Fatigue/chemically induced , Female , Hepatitis/etiology , Humans , Hypertension/chemically induced , Ipilimumab/administration & dosage , Male , Middle Aged , Neoplastic Cells, Circulating/metabolism , Nivolumab/administration & dosage , Progression-Free Survival , Proto-Oncogene Proteins c-met/metabolism , Pyridines/administration & dosage , Receptors, CXCR4/metabolism , Response Evaluation Criteria in Solid Tumors , Survival Rate , Young Adult
12.
Lancet Oncol ; 21(8): 1099-1109, 2020 08.
Article En | MEDLINE | ID: mdl-32645282

BACKGROUND: Cabozantinib is a multikinase inhibitor of MET, VEGFR, AXL, and RET, which also has an effect on the tumour immune microenvironment by decreasing regulatory T cells and myeloid-derived suppressor cells. In this study, we examined the activity of cabozantinib in patients with metastatic platinum-refractory urothelial carcinoma. METHODS: This study was an open-label, single-arm, three-cohort phase 2 trial done at the National Cancer Institute (Bethesda, MD, USA). Eligible patients were 18 years or older, had histologically confirmed urothelial carcinoma or rare genitourinary tract histologies, Karnofsky performance scale index of 60% or higher, and documented disease progression after at least one previous line of platinum-based chemotherapy (platinum-refractory). Cohort one included patients with metastatic urothelial carcinoma with measurable disease as defined by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Two additional cohorts that enrolled in parallel (patients with bone-only urothelial carcinoma metastases and patients with rare histologies of the genitourinary tract) were exploratory. Patients received cabozantinib 60 mg orally once daily in 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed objective response rate by RECIST in cohort one. Response was assessed in all patients who met the eligibility criteria and who received at least 8 weeks of therapy. All patients who received at least one dose of cabozantinib were included in the safety analysis. This completed study is registered with ClinicalTrials.gov, NCT01688999. FINDINGS: Between Sept 28, 2012, and Oct, 20, 2015, 68 patients were enrolled on the study (49 in cohort one, six in cohort two, and 13 in cohort three). All patients received at least one dose of cabozantinib. The median follow-up was 61·2 months (IQR 53·8-70·0) for the 57 patients evaluable for response. In the 42 evaluable patients in cohort one, there was one complete response and seven partial responses (objective response rate 19%, 95% CI 9-34). The most common grade 3-4 adverse events were fatigue (six [9%] patients), hypertension (five [7%]), proteinuria (four [6%]), and hypophosphataemia (four [6%]). There were no treatment-related deaths. INTERPRETATION: Cabozantinib has single-agent clinical activity in patients with heavily pretreated, platinum-refractory metastatic urothelial carcinoma with measurable disease and bone metastases and is generally well tolerated. Cabozantinib has innate and adaptive immunomodulatory properties providing a rationale for combining cabozantinib with immunotherapeutic strategies. FUNDING: National Cancer Institute Intramural Program and the Cancer Therapy Evaluation Program.


Anilides/therapeutic use , Antineoplastic Agents/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Pyridines/therapeutic use , Urologic Neoplasms/drug therapy , Adult , Aged , Drug Resistance, Neoplasm/drug effects , Female , Humans , Male , Middle Aged , Platinum Compounds/therapeutic use , Protein Kinase Inhibitors/therapeutic use
13.
Cancer Res ; 80(2): 304-318, 2020 01 15.
Article En | MEDLINE | ID: mdl-31732654

The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates ß-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of ß-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma/drug therapy , Cell Plasticity/drug effects , Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/pathology , Animals , Antigens, CD/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Biopsy, Large-Core Needle , Cadherins/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , Indazoles , Male , Mice , Neoplastic Stem Cells/drug effects , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vimentin/metabolism , Xenograft Model Antitumor Assays , beta Catenin/metabolism
14.
Clin Genitourin Cancer ; 17(1): 1-6, 2019 02.
Article En | MEDLINE | ID: mdl-30287223

Renal medullary carcinoma (RMC) is one of the most aggressive renal cell carcinomas. It predominantly afflicts young adults and adolescents with sickle cell trait and other sickle hemoglobinopathies, and is refractory to targeted and antiangiogenic therapies used in patients with clear-cell renal cell carcinoma. Platinum-based cytotoxic chemotherapy is the mainstay for RMC treatment. On the basis of recent advances in the diagnosis, management, and clinical trial development for RMC, a panel of experts met in October 2017 and developed updated consensus recommendations to inform clinicians, researchers, and patients. Because RMC often aggressively recurs while patients are still recovering from nephrectomy, upfront chemotherapy should be considered for most patients, including those with localized disease. After safety and dosing information has been established in adults, phase II and III trials enrolling patients with RMC should allow patients aged 12 years and older to be accrued. Patients with the very rare unclassified renal cell carcinoma with medullary phenotype variant should be included in RMC trials. Medical providers should be aware that RMC can afflict subjects of all races, and not only those of African descent, and that the presence of sickle cell trait, or of other sickle hemoglobinopathies, can affect drug responses and toxicity.


Carcinoma, Medullary/therapy , Carcinoma, Renal Cell/therapy , Clinical Trials as Topic , Eligibility Determination , Kidney Neoplasms/therapy , Patient Selection , Practice Guidelines as Topic/standards , Carcinoma, Medullary/diagnosis , Carcinoma, Renal Cell/diagnosis , Databases, Factual , Humans , Kidney Neoplasms/diagnosis , Prognosis
15.
PLoS One ; 13(6): e0199361, 2018.
Article En | MEDLINE | ID: mdl-29928062

The presence of cancer stem cells (CSCs) and the induction of epithelial-to-mesenchymal transition (EMT) in tumors are associated with tumor aggressiveness, metastasis, drug resistance, and poor prognosis, necessitating the development of reagents for unambiguous detection of CSC- and EMT-associated proteins in tumor specimens. To this end, we generated novel antibodies to EMT- and CSC-associated proteins, including Goosecoid, Sox9, Slug, Snail, and CD133. Importantly, unlike several widely used antibodies to CD133, the anti-CD133 antibodies we generated recognize epitopes distal to known glycosylation sites, enabling analyses that are not confounded by differences in CD133 glycosylation. For all target proteins, we selected antibodies that yielded the expected target protein molecular weights by Western analysis and the correct subcellular localization patterns by immunofluorescence microscopy assay (IFA); binding selectivity was verified by immunoprecipitation-mass spectrometry and by immunohistochemistry and IFA peptide blocking experiments. Finally, we applied these reagents to assess modulation of the respective markers of EMT and CSCs in xenograft tumor models by IFA. We observed that the constitutive presence of human hepatocyte growth factor (hHGF) in the tumor microenvironment of H596 non-small cell lung cancer tumors implanted in homozygous hHGF knock-in transgenic mice induced a more mesenchymal-like tumor state (relative to the epithelial-like state when implanted in control SCID mice), as evidenced by the elevated expression of EMT-associated transcription factors detected by our novel antibodies. Similarly, our new anti-CD133 antibody enabled detection and quantitation of drug-induced reductions in CD133-positive tumor cells following treatment of SUM149PT triple-negative breast cancer xenograft models with the CSC/focal adhesion kinase (FAK) inhibitor VS-6063. Thus, our novel antibodies to CSC- and EMT-associated factors exhibit sufficient sensitivity and selectivity for immunofluorescence microscopy studies of these processes in preclinical xenograft tumor specimens and the potential for application with clinical samples.


Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/pathology , Tumor Microenvironment/drug effects , AC133 Antigen/metabolism , Animals , Antibodies, Monoclonal/biosynthesis , Antineoplastic Agents/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , Gene Knock-In Techniques , Hepatocyte Growth Factor/genetics , Humans , Indicators and Reagents , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Transgenic , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Phenotype , Pyrazines/pharmacology , Pyrazines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Cell Rep ; 23(1): 313-326.e5, 2018 04 03.
Article En | MEDLINE | ID: mdl-29617669

Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival.


Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Genome, Human , Kidney Neoplasms/genetics , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Metabolic Networks and Pathways , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phenotype , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
18.
Mol Cancer Ther ; 17(3): 698-709, 2018 03.
Article En | MEDLINE | ID: mdl-29444985

The development of molecularly targeted agents has benefited from use of pharmacodynamic markers to identify "biologically effective doses" (BED) below MTDs, yet this knowledge remains underutilized in selecting dosage regimens and in comparing the effectiveness of targeted agents within a class. We sought to establish preclinical proof-of-concept for such pharmacodynamics-based BED regimens and effectiveness comparisons using MET kinase small-molecule inhibitors. Utilizing pharmacodynamic biomarker measurements of MET signaling (tumor pY1234/1235MET/total MET ratio) in a phase 0-like preclinical setting, we developed optimal dosage regimens for several MET kinase inhibitors and compared their antitumor efficacy in a MET-amplified gastric cancer xenograft model (SNU-5). Reductions in tumor pY1234/1235MET/total MET of 95%-99% were achievable with tolerable doses of EMD1214063/MSC2156119J (tepotinib), XL184 (cabozantinib), and XL880/GSK1363089 (foretinib), but not ARQ197 (tivantinib), which did not alter the pharmacodynamic biomarker. Duration of kinase suppression and rate of kinase recovery were specific to each agent, emphasizing the importance of developing customized dosage regimens to achieve continuous suppression of the pharmacodynamic biomarker at the required level (here, ≥90% MET kinase suppression). The customized dosage regimen of each inhibitor yielded substantial and sustained tumor regression; the equivalent effectiveness of customized dosage regimens that achieve the same level of continuous molecular target control represents preclinical proof-of-concept and illustrates the importance of proper scheduling of targeted agent BEDs. Pharmacodynamics-guided biologically effective dosage regimens (PD-BEDR) potentially offer a superior alternative to pharmacokinetic guidance (e.g., drug concentrations in surrogate tissues) for developing and making head-to-head comparisons of targeted agents. Mol Cancer Ther; 17(3); 698-709. ©2018 AACR.


Drug Development/methods , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Stomach Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Anilides/pharmacology , Animals , Cell Line, Tumor , Humans , Mice, Nude , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/metabolism , Pyridazines/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Treatment Outcome , Tumor Burden/drug effects
19.
Biochem Soc Trans ; 45(4): 855-870, 2017 08 15.
Article En | MEDLINE | ID: mdl-28673936

Hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase, drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Typical paracrine HGF/Met signaling is regulated by HGF activation at target cell surfaces, HGF binding-induced receptor activation, internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis, tumor angiogenesis and invasiveness, and tumor metastasis in many types of cancer, leading to the rapid growth of pathway-targeted anticancer drug development programs. We review here HGF and Met structure and function, basic properties of HGF/Met pathway antagonists now in clinical development, and recent clinical trial results. Presently, the main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of effective therapy combinations. The wealth of basic information, analytical reagents and model systems available regarding normal and oncogenic HGF/Met signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective cancer treatment.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hepatocyte Growth Factor/antagonists & inhibitors , Models, Biological , Molecular Targeted Therapy , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Hepatocyte Growth Factor/chemistry , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Molecular Targeted Therapy/trends , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Protein Conformation , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism
20.
Ann Transl Med ; 5(1): 3, 2017 Jan.
Article En | MEDLINE | ID: mdl-28164088

MET tyrosine kinase (TK) dysregulation is significantly implicated in many types of cancer. Despite over 20 years of drug development to target MET in cancers, a pure anti-MET therapeutic has not yet received market approval. The failure of two recently concluded phase III trials point to a major weakness in biomarker strategies to identify patients who will benefit most from MET therapies. The capability to interrogate oncogenic mutations in MET via circulating tumor DNA (ctDNA) provides an important advancement in identification and stratification of patients for MET therapy. However, a wide range in type and frequency of these mutations suggest there is a need to carefully link these mutations to MET dysregulation, at least in proof-of-concept studies. In this review, we elaborate how we can utilize recently developed and validated pharmacodynamic biomarkers of MET not only to show target engagement, but more importantly to quantitatively measure MET dysregulation in tumor tissues. The MET assay endpoints provide evidence of both canonical and non-canonical MET signaling, can be used as "effect markers" to define biologically effective doses (BEDs) for molecularly targeted drugs, confirm mechanism-of-action in testing combination of drugs, and establish whether a diagnostic test is reporting MET dysregulation. We have established standard operating procedures for tumor biopsy collections to control pre-analytical variables that have produced valid results in proof-of-concept studies. The reagents and procedures are made available to the research community for potential implementation on multiple platforms such as ELISA, quantitative immunofluorescence assay (qIFA), and immuno-MRM assays.

...