Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579720

ABSTRACT

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Subject(s)
Cell Differentiation , Gastrulation , Germ Layers , Animals , Mice , Germ Layers/cytology , Germ Layers/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Fetal Proteins/metabolism , Fetal Proteins/genetics , Wnt Signaling Pathway , Cell Proliferation , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
2.
Sci Adv ; 10(13): eadl0608, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552021

ABSTRACT

The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.


Subject(s)
Golgi Apparatus , Membrane Proteins , Golgi Matrix Proteins/metabolism , Membrane Proteins/metabolism , Golgi Apparatus/metabolism , Biological Transport , Endosomes/metabolism , Protein Binding
3.
Nat Commun ; 14(1): 7246, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945612

ABSTRACT

NLRP3 induces caspase-1-dependent pyroptotic cell death to drive inflammation. Aberrant activity of NLRP3 occurs in many human diseases. NLRP3 activation induces ASC polymerization into a single, micron-scale perinuclear punctum. Higher resolution imaging of this signaling platform is needed to understand how it induces pyroptosis. Here, we apply correlative cryo-light microscopy and cryo-electron tomography to visualize ASC/caspase-1 in NLRP3-activated cells. The puncta are composed of branched ASC filaments, with a tubular core formed by the pyrin domain. Ribosomes and Golgi-like or endosomal vesicles permeate the filament network, consistent with roles for these organelles in NLRP3 activation. Mitochondria are not associated with ASC but have outer-membrane discontinuities the same size as gasdermin D pores, consistent with our data showing gasdermin D associates with mitochondria and contributes to mitochondrial depolarization.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Electron Microscope Tomography , Gasdermins , Caspase 1/metabolism , Caspases/metabolism , Pyroptosis , Organelles/metabolism
4.
EMBO J ; 42(23): e114473, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37872872

ABSTRACT

The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Humans , Dyneins/metabolism , Dynactin Complex/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Biological Transport/physiology , Microtubules/metabolism , Endosomes/metabolism
5.
Cell Stem Cell ; 30(10): 1351-1367.e10, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37802039

ABSTRACT

Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.


Subject(s)
Brain , Organoids , Humans , Cell Differentiation , Sequence Analysis, RNA
6.
Cell Rep ; 42(2): 112107, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36800289

ABSTRACT

Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 µm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs.


Subject(s)
Lipid Droplets , Proteins , Lipid Droplets/metabolism , Proteins/metabolism , Lipids , Lipid Metabolism
7.
J Math Imaging Vis ; 64(9): 968-992, 2022.
Article in English | MEDLINE | ID: mdl-36329880

ABSTRACT

We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196-1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal-dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.

8.
Mol Biol Cell ; 33(13): ar122, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36001360

ABSTRACT

Traffic of proteins out of the endoplasmic reticulum (ER) is driven by the COPII coat, a layered protein scaffold that mediates the capture of cargo proteins and the remodeling of the ER membrane into spherical vesicular carriers. Although the components of this machinery have been genetically defined, and the mechanisms of coat assembly extensively explored in vitro, understanding the physical mechanisms of membrane remodeling in cells remains a challenge. Here we use correlative light and electron microscopy (CLEM) to visualize the nanoscale ultrastructure of membrane remodeling at ER exit sites (ERES) in yeast cells. Using various COPII mutants, we have determined the broad contribution that each layer of the coat makes to membrane remodeling. Our data suggest that inner coat components define the radius of curvature, whereas outer coat components facilitate membrane fission. The organization of the coat in conjunction with membrane biophysical properties determines the ultrastructure of vesicles and thus the efficiency of protein transport.


Subject(s)
COP-Coated Vesicles , Saccharomyces cerevisiae , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Microscopy, Electron , Protein Transport , Proteins/metabolism , Saccharomyces cerevisiae/metabolism
9.
Science ; 371(6532): 910-916, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33632841

ABSTRACT

The main force generators in eukaryotic cilia and flagella are axonemal outer dynein arms (ODAs). During ciliogenesis, these ~1.8-megadalton complexes are assembled in the cytoplasm and targeted to cilia by an unknown mechanism. Here, we used the ciliate Tetrahymena to identify two factors (Q22YU3 and Q22MS1) that bind ODAs in the cytoplasm and are required for ODA delivery to cilia. Q22YU3, which we named Shulin, locked the ODA motor domains into a closed conformation and inhibited motor activity. Cryo-electron microscopy revealed how Shulin stabilized this compact form of ODAs by binding to the dynein tails. Our findings provide a molecular explanation for how newly assembled dyneins are packaged for delivery to the cilia.


Subject(s)
Axonemal Dyneins/metabolism , Cilia/metabolism , Protozoan Proteins/metabolism , Tetrahymena thermophila/physiology , Axonemal Dyneins/chemistry , Axonemal Dyneins/genetics , Cryoelectron Microscopy , Cytoplasm/metabolism , Gene Knockdown Techniques , Image Processing, Computer-Assisted , Microtubules/physiology , Models, Molecular , Movement , Protein Binding , Protein Conformation , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Tetrahymena thermophila/genetics
10.
Traffic ; 21(11): 702-711, 2020 11.
Article in English | MEDLINE | ID: mdl-32975860

ABSTRACT

The appropriate delivery of secretory proteins to the correct subcellular destination is an essential cellular process. In the endoplasmic reticulum (ER), secretory proteins are captured into COPII vesicles that generally exclude ER resident proteins and misfolded proteins. We previously characterized a collection of yeast mutants that fail to enforce this sorting stringency and improperly secrete the ER chaperone, Kar2 (Copic et al., Genetics 2009). Here, we used the emp24Δ mutant strain that secretes Kar2 to identify candidate proteins that might regulate ER export, reasoning that loss of regulatory proteins would restore sorting stringency. We find that loss of the deubiquitylation complex Ubp3/Bre5 reverses all of the known phenotypes of the emp24Δ mutant, and similarly reverses Kar2 secretion of many other ER retention mutants. Based on a combination of genetic interactions and live cell imaging, we conclude that Ubp3 and Bre5 modulate COPII coat assembly at ER exit sites. Therefore, we propose that Ubp3/Bre5 influences the rate of vesicle formation from the ER that in turn can impact ER quality control events.


Subject(s)
COP-Coated Vesicles , Saccharomyces cerevisiae Proteins , COP-Coated Vesicles/metabolism , Endopeptidases/metabolism , Endoplasmic Reticulum/metabolism , Protein Transport , Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Elife ; 92020 06 30.
Article in English | MEDLINE | ID: mdl-32602837

ABSTRACT

The lipid kinase VPS34 orchestrates diverse processes, including autophagy, endocytic sorting, phagocytosis, anabolic responses and cell division. VPS34 forms various complexes that help adapt it to specific pathways, with complexes I and II being the most prominent ones. We found that physicochemical properties of membranes strongly modulate VPS34 activity. Greater unsaturation of both substrate and non-substrate lipids, negative charge and curvature activate VPS34 complexes, adapting them to their cellular compartments. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) of complexes I and II on membranes elucidated structural determinants that enable them to bind membranes. Among these are the Barkor/ATG14L autophagosome targeting sequence (BATS), which makes autophagy-specific complex I more active than the endocytic complex II, and the Beclin1 BARA domain. Interestingly, even though Beclin1 BARA is common to both complexes, its membrane-interacting loops are critical for complex II, but have only a minor role for complex I.


Subject(s)
Autophagy , Cell Membrane/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , Endosomes , Humans
12.
J Cell Biol ; 219(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32406500

ABSTRACT

Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.


Subject(s)
COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Saccharomyces cerevisiae/metabolism , Secretory Pathway/genetics , COP-Coated Vesicles/genetics , COP-Coated Vesicles/ultrastructure , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/ultrastructure , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genes, Reporter , Golgi Apparatus/genetics , Golgi Apparatus/ultrastructure , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Optical Imaging , Protein Transport , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
13.
SLAS Discov ; 25(9): 985-999, 2020 10.
Article in English | MEDLINE | ID: mdl-32436764

ABSTRACT

Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein's cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.


Subject(s)
Cytoplasmic Dyneins/antagonists & inhibitors , High-Throughput Screening Assays/methods , Peroxisomes/genetics , Small Molecule Libraries/pharmacology , Biological Transport/drug effects , Cytoplasmic Dyneins/chemistry , Cytoplasmic Dyneins/genetics , Humans , Ion Transport/genetics , Microtubules/drug effects
14.
Dev Cell ; 52(3): 364-378.e7, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31902655

ABSTRACT

The myosin II activator Rho-kinase (Rok) is planar polarized at the tissue boundary of the Drosophila embryonic salivary gland placode through a negative regulation by the apical polarity protein Crumbs that is anisotropically localized at the boundary. However, in inner cells of the placode, both Crumbs and Rok are isotropically enriched at junctions. We propose that modulation of Rok membrane residence time by Crumbs' downstream effectors can reconcile both behaviors. Using FRAP combined with in silico simulations, we find that the lower membrane dissociation rate (koff) of Rok at the tissue boundary with low Crumbs explains this boundary-specific effect. The S/T kinase Pak1, recruited by Crumbs and Cdc42, negatively affects Rok membrane association in vivo and in vitro can phosphorylate Rok near the pleckstrin homology (PH) domain that mediates membrane association. These data reveal an important mechanism of the modulation of Rok membrane residence time via affecting the koff that may be widely employed during tissue morphogenesis.


Subject(s)
Cell Membrane/metabolism , Cell Polarity , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GTP-Binding Proteins/metabolism , Membrane Proteins/metabolism , p21-Activated Kinases/metabolism , rho-Associated Kinases/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , GTP-Binding Proteins/genetics , Male , Membrane Proteins/genetics , Phosphorylation , p21-Activated Kinases/genetics , rho-Associated Kinases/genetics
15.
Dev Cell ; 51(4): 488-502.e8, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31743663

ABSTRACT

Lipid flow between cellular organelles occurs via membrane contact sites. Extended-synaptotagmins, known as tricalbins in yeast, mediate lipid transfer between the endoplasmic reticulum (ER) and plasma membrane (PM). How these proteins regulate membrane architecture to transport lipids across the aqueous space between bilayers remains unknown. Using correlative microscopy, electron cryo-tomography, and high-throughput genetics, we address the interplay of architecture and function in budding yeast. We find that ER-PM contacts differ in protein composition and membrane morphology, not in intermembrane distance. In situ electron cryo-tomography reveals the molecular organization of tricalbin-mediated contacts, suggesting a structural framework for putative lipid transfer. Genetic analysis uncovers functional overlap with cellular lipid routes, such as maintenance of PM asymmetry. Further redundancies are suggested for individual tricalbin protein domains. We propose a modularity of molecular and structural functions of tricalbins and of their roles within the cellular network of lipid distribution pathways.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane/physiology , Lipids , Membrane Proteins/metabolism , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/metabolism , Synaptotagmins/metabolism
16.
Curr Biol ; 29(17): 2892-2904.e8, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31474533

ABSTRACT

In order to explore and interact with their surroundings, animals need to orient toward specific positions in space. Throughout the animal kingdom, head movements represent a primary form of orienting behavior. The superior colliculus (SC) is a fundamental structure for the generation of orienting responses, but how genetically distinct groups of collicular neurons contribute to these spatially tuned behaviors remains largely to be defined. Here, through the genetic dissection of the murine SC, we identify a functionally and genetically homogeneous subclass of glutamatergic neurons defined by the expression of the paired-like homeodomain transcription factor Pitx2. We show that the optogenetic stimulation of Pitx2ON neurons drives three-dimensional head displacements characterized by stepwise, saccade-like kinematics. Furthermore, during naturalistic foraging behavior, the activity of Pitx2ON neurons precedes and predicts the onset of spatially tuned head movements. Intriguingly, we reveal that Pitx2ON neurons are clustered in an orderly array of anatomical modules that tile the entire intermediate layer of the SC. Such a modular organization gives origin to a discrete and discontinuous representation of the motor space, with each Pitx2ON module subtending a defined portion of the animal's egocentric space. The modularity of Pitx2ON neurons provides an anatomical substrate for the convergence of spatially coherent sensory and motor signals of cortical and subcortical origins, thereby promoting the recruitment of appropriate movement vectors. Overall, these data support the view of the superior colliculus as a selectively addressable and modularly organized spatial-motor register.


Subject(s)
Neurons/physiology , Orientation, Spatial/physiology , Space Perception/physiology , Superior Colliculi/physiology , Animals , Male , Mice
17.
Sci Rep ; 9(1): 3975, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850711

ABSTRACT

In many non-excitable cells, the depletion of endoplasmic reticulum (ER) Ca2+ stores leads to the dynamic formation of membrane contact sites (MCSs) between the ER and the plasma membrane (PM), which activates the store-operated Ca2+ entry (SOCE) to refill the ER store. Two different Ca2+-sensitive proteins, STIM1 and extended synaptotagmin-1 (E-syt1), are activated during this process. Due to the lack of live cell super-resolution imaging, how MCSs are dynamically regulated by STIM1 and E-syt1 coordinately during ER Ca2+ store depletion and replenishment remain unknown. With home-built super-resolution microscopes that provide superior axial and lateral resolution in live cells, we revealed that extracellular Ca2+ influx via SOCE activated E-syt1s to move towards the PM by ~12 nm. Unexpectedly, activated E-syt1s did not constitute the MCSs per se, but re-arranged neighboring ER structures into ring-shaped MCSs (230~280 nm in diameter) enclosing E-syt1 puncta, which helped to stabilize MCSs and accelerate local ER Ca2+ replenishment. Overall, we have demonstrated different roles of STIM1 and E-syt1 in MCS formation regulation, SOCE activation and ER Ca2+ store replenishment.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , Synaptotagmins/metabolism , Calcium Signaling/physiology , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Membrane Proteins/metabolism
18.
Nat Neurosci ; 22(4): 669-679, 2019 04.
Article in English | MEDLINE | ID: mdl-30886407

ABSTRACT

Neural organoids have the potential to improve our understanding of human brain development and neurological disorders. However, it remains to be seen whether these tissues can model circuit formation with functional neuronal output. Here we have adapted air-liquid interface culture to cerebral organoids, leading to improved neuronal survival and axon outgrowth. The resulting thick axon tracts display various morphologies, including long-range projection within and away from the organoid, growth-cone turning, and decussation. Single-cell RNA sequencing reveals various cortical neuronal identities, and retrograde tracing demonstrates tract morphologies that match proper molecular identities. These cultures exhibit active neuronal networks, and subcortical projecting tracts can innervate mouse spinal cord explants and evoke contractions of adjacent muscle in a manner dependent on intact organoid-derived innervating tracts. Overall, these results reveal a remarkable self-organization of corticofugal and callosal tracts with a functional output, providing new opportunities to examine relevant aspects of human CNS development and disease.


Subject(s)
Cerebral Cortex/growth & development , Neurons/physiology , Organoids/growth & development , Tissue Culture Techniques/methods , Axons/physiology , Cell Survival , Cerebral Cortex/cytology , Female , Humans , Male , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Organoids/cytology , Pluripotent Stem Cells/physiology
19.
FEBS J ; 286(8): 1543-1560, 2019 04.
Article in English | MEDLINE | ID: mdl-30715798

ABSTRACT

Double-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection and is sensed primarily by RIG-I-like receptors (RLRs). Oligomerization of RLRs following binding to cytosolic dsRNA activates and nucleates self-assembly of the mitochondrial antiviral-signaling protein (MAVS). In the current signaling model, the caspase recruitment domains of MAVS form helical fibrils that self-propagate like prions to promote signaling complex assembly. However, there is no conclusive evidence that MAVS forms fibrils in cells or with the transmembrane anchor present. We show here with super-resolution light microscopy that MAVS activation by dsRNA induces mitochondrial membrane remodeling. Quantitative image analysis at imaging resolutions as high as 32 nm shows that in the cellular context, MAVS signaling complexes and the fibrils within them are smaller than 80 nm. The transmembrane domain of MAVS is required for its membrane remodeling, interferon signaling, and proapoptotic activities. We conclude that membrane tethering of MAVS restrains its polymerization and contributes to mitochondrial remodeling and apoptosis upon dsRNA sensing.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interferon-beta/metabolism , Mitochondrial Membranes/metabolism , 3T3 Cells/virology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Death/physiology , Cytosol/physiology , Fibroblasts/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Membrane Transport Proteins/metabolism , Mice , Mice, Knockout , Microscopy/methods , Mitochondrial Membranes/virology , Mitochondrial Precursor Protein Import Complex Proteins , Protein Domains , RNA, Double-Stranded/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Single-Cell Analysis/methods , West Nile Fever/metabolism
20.
Elife ; 72018 08 09.
Article in English | MEDLINE | ID: mdl-30091700

ABSTRACT

Analysis of the spatial distribution of endomembrane trafficking is fundamental to understand the mechanisms controlling cellular dynamics, cell homeostasy, and cell interaction with its external environment in normal and pathological situations. We present a semi-parametric framework to quantitatively analyze and visualize the spatio-temporal distribution of intracellular events from different conditions. From the spatial coordinates of intracellular features such as segmented subcellular structures or vesicle trajectories, QuantEv automatically estimates weighted densities that are easy to interpret and performs a comprehensive statistical analysis from distribution distances. We apply this approach to study the spatio-temporal distribution of moving Rab6 fluorescently labeled membranes with respect to their direction of movement in crossbow- and disk-shaped cells. We also investigate the position of the generating hub of Rab11-positive membranes and the effect of actin disruption on Rab11 trafficking in coordination with cell shape.


Subject(s)
Cell Membrane/metabolism , Cell Physiological Phenomena , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , rab GTP-Binding Proteins/metabolism , Cell Membrane/ultrastructure , Computational Biology , HeLa Cells , Humans , Models, Biological , Protein Transport , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...