Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Br J Cancer ; 130(7): 1206-1220, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310186

ABSTRACT

BACKGROUND: Na+,HCO3--cotransporter NBCn1/Slc4a7 accelerates murine breast carcinogenesis. Lack of specific pharmacological tools previously restricted therapeutic targeting of NBCn1 and identification of NBCn1-dependent functions in human breast cancer. METHODS: We develop extracellularly-targeted anti-NBCn1 antibodies, screen for functional activity on cells, and evaluate (a) mechanisms of intracellular pH regulation in human primary breast carcinomas, (b) proliferation, cell death, and tumor growth consequences of NBCn1 in triple-negative breast cancer, and (c) association of NBCn1-mediated Na+,HCO3--cotransport with human breast cancer metastasis. RESULTS: We identify high-affinity (KD ≈ 0.14 nM) anti-NBCn1 antibodies that block human NBCn1-mediated Na+,HCO3--cotransport in cells, without cross-reactivity towards human NBCe1 or murine NBCn1. These anti-NBCn1 antibodies abolish Na+,HCO3--cotransport activity in freshly isolated primary organoids from human breast carcinomas and lower net acid extrusion effectively in primary breast cancer tissue from patients with macrometastases in axillary lymph nodes. Inhibitory anti-NBCn1 antibodies decelerate tumor growth in vivo by ~50% in a patient-derived xenograft model of triple-negative breast cancer and pH-dependently reduce colony formation, cause G2/M-phase cell cycle accumulation, and increase apoptosis of metastatic triple-negative breast cancer cells in vitro. CONCLUSIONS: Inhibitory anti-NBCn1 antibodies block net acid extrusion in human breast cancer tissue, particularly from patients with disseminated disease, and pH-dependently limit triple-negative breast cancer growth.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/genetics , Apoptosis , Hydrogen-Ion Concentration , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism
2.
Cells ; 12(8)2023 04 07.
Article in English | MEDLINE | ID: mdl-37190017

ABSTRACT

Two α-isoforms of the Na+,K+-ATPase (α1 and α2) are expressed in the cardiovascular system, and it is unclear which isoform is the preferential regulator of contractility. Mice heterozygous for the familial hemiplegic migraine type 2 (FHM2) associated mutation in the α2-isoform (G301R; α2+/G301R mice) have decreased expression of cardiac α2-isoform but elevated expression of the α1-isoform. We aimed to investigate the contribution of the α2-isoform function to the cardiac phenotype of α2+/G301R hearts. We hypothesized that α2+/G301R hearts exhibit greater contractility due to reduced expression of cardiac α2-isoform. Variables for contractility and relaxation of isolated hearts were assessed in the Langendorff system without and in the presence of ouabain (1 µM). Atrial pacing was performed to investigate rate-dependent changes. The α2+/G301R hearts displayed greater contractility than WT hearts during sinus rhythm, which was rate-dependent. The inotropic effect of ouabain was more augmented in α2+/G301R hearts than in WT hearts during sinus rhythm and atrial pacing. In conclusion, cardiac contractility was greater in α2+/G301R hearts than in WT hearts under resting conditions. The inotropic effect of ouabain was rate-independent and enhanced in α2+/G301R hearts, which was associated with increased systolic work.


Subject(s)
Atrial Fibrillation , Migraine Disorders , Mice , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Ouabain/pharmacology , Protein Isoforms/metabolism , Mutation/genetics , Phenotype
3.
Front Physiol ; 13: 1007340, 2022.
Article in English | MEDLINE | ID: mdl-36213229

ABSTRACT

Background: Several local Ca2+ events are characterized in smooth muscle cells. We have previously shown that an inhibitor of the Na,K-ATPase, ouabain induces spatially restricted intracellular Ca2+ transients near the plasma membrane, and suggested the importance of this signaling for regulation of intercellular coupling and smooth muscle cell contraction. The mechanism behind these Na,K-ATPase-dependent "Ca2+ flashes" remains to be elucidated. In addition to its conventional ion transport function, the Na,K-ATPase is proposed to contribute to intracellular pathways, including Src kinase activation. The microtubule network is important for intracellular signaling, but its role in the Na,K-ATPase-Src kinase interaction is not known. We hypothesized the microtubule network was responsible for maintaining the Na,K-ATPase-Src kinase interaction, which enables Ca2+ flashes. Methods: We characterized Ca2+ flashes in cultured smooth muscle cells, A7r5, and freshly isolated smooth muscle cells from rat mesenteric artery. Cells were loaded with Ca2+-sensitive fluorescent dyes, Calcium Green-1/AM and Fura Red/AM, for ratiometric measurements of intracellular Ca2+. The Na,K-ATPase α2 isoform was knocked down with siRNA and the microtubule network was disrupted with nocodazole. An involvement of the Src signaling was tested pharmacologically and with Western blot. Protein interactions were validated with proximity ligation assays. Results: The Ca2+ flashes were induced by micromolar concentrations of ouabain. Knockdown of the α2 isoform Na,K-ATPase abolished Ca2+ flashes, as did inhibition of tyrosine phosphorylation with genistein and PP2, and the inhibitor of the Na,K-ATPase-dependent Src activation, pNaKtide. Ouabain-induced Ca2+ flashes were associated with Src kinase activation by phosphorylation. The α2 isoform Na,K-ATPase and Src kinase colocalized in the cells. Disruption of microtubule with nocodazole inhibited Ca2+ flashes, reduced Na,K-ATPase/Src interaction and Src activation. Conclusion: We demonstrate that the Na,K-ATPase-dependent Ca2+ flashes in smooth muscle cells require an interaction between the α2 isoform Na, K-ATPase and Src kinase, which is maintained by the microtubule network.

4.
Stress ; 25(1): 227-234, 2022 01.
Article in English | MEDLINE | ID: mdl-35666099

ABSTRACT

Neurovascular coupling ensures rapid and precise delivery of O2 and nutrients to active brain regions. Chronic stress is known to disturb neurovascular signaling with grave effects on brain integrity. We hypothesized that stress-induced neurovascular disturbances depend on stress susceptibility. Wistar male rats were exposed to 8 weeks of chronic mild stress. Stressed rats with anhedonia-like behavior and with preserved hedonic state were identified from voluntary sucrose consumption. In brain slices from nonstressed, anhedonic, and hedonic rats, neurons and astrocytes showed similar intracellular Ca2+ responses to neuronal excitation. Parenchymal arterioles in brain slices from nonstressed, anhedonic, and hedonic rats showed vasodilation in response to neuronal excitation. This vasodilation was dependent on inward rectifying K+ channel (Kir2) activation. In hedonic rats, this vasodilation was transient and followed by vasoconstriction insensitive to Kir2 channel inhibition with 100 µM BaCl2. Isolated arteries from hedonic rats showed increased contractility. Elevation of bath K+ relaxed isolated middle cerebral arteries in a concentration-dependent and Kir2-dependent manner. The vasorelaxation to 20-24 mM K+ was reduced in arteries from hedonic rats. The expression of voltage-gated K+ channels, Kv7.4, was reduced in the cerebral arteries from hedonic rats, whereas the expression of arterial inward-rectifying K+ channels, Kir2.1 was similar to that of nonstressed and anhedonic rats. We propose that preserved hedonic state is associated with increased arterial contractility caused by reduced hyperpolarizing contribution of Kv7.4 channels leading to biphasic cerebrovascular responses to neuronal excitation. These findings reveal a novel potential coping mechanism associated with altered neurovascular signaling.


Subject(s)
Stress, Psychological , Vasodilation , Animals , Arterioles/physiology , Male , Rats , Rats, Wistar , Vasoconstriction , Vasodilation/physiology
5.
Int J Mol Sci ; 21(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326025

ABSTRACT

While the role of circulating ouabain-like compounds in the cardiovascular and central nervous systems, kidney and other tissues in health and disease is well documented, little is known about its effects in skeletal muscle. In this study, rats were intraperitoneally injected with ouabain (0.1-10 µg/kg for 4 days) alone or with subsequent injections of lipopolysaccharide (1 mg/kg). Some rats were also subjected to disuse for 6 h by hindlimb suspension. In the diaphragm muscle, chronic ouabain (1 µg/kg) hyperpolarized resting potential of extrajunctional membrane due to specific increase in electrogenic transport activity of the 2 Na,K-ATPase isozyme and without changes in 1 and 2 Na,K-ATPase protein content. Ouabain (10-20 nM), acutely applied to isolated intact diaphragm muscle from not injected rats, hyperpolarized the membrane to a similar extent. Chronic ouabain administration prevented lipopolysaccharide-induced (diaphragm muscle) or disuse-induced (soleus muscle) depolarization of the extrajunctional membrane. No stimulation of the 1 Na,K-ATPase activity in human red blood cells, purified lamb kidney and Torpedo membrane preparations by low ouabain concentrations was observed. Our results suggest that skeletal muscle electrogenesis is subjected to regulation by circulating ouabain via the 2 Na,K-ATPase isozyme that could be important for adaptation of this tissue to functional impairment.


Subject(s)
Muscle, Skeletal/metabolism , Ouabain/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Blood Glucose , Enzyme Activation , Humans , Isoenzymes/metabolism , Kinetics , Male , Membrane Potentials/drug effects , Muscle, Skeletal/drug effects , Ouabain/blood , Ouabain/pharmacology , Rats , Sheep , Torpedo
6.
Am J Physiol Cell Physiol ; 318(5): C1030-C1041, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32293933

ABSTRACT

Na,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice. In diaphragm muscles, the motor endplate structure was severely disturbed (manifested by defragmentation) in mdx mice only. The endplate membrane of both Bla/J and mdx mice was depolarized due to specific loss of the α2-Na,K-ATPase electrogenic activity and its decreased membrane abundance. Total FXYD1 subunit (modulates Na,K-ATPase activity) abundance was decreased in both mouse models. However, the α2-Na,K-ATPase protein content as well as mRNA expression were specifically and significantly reduced only in mdx mice. The endplate membrane cholesterol redistribution was most pronounced in mdx mice. Soleus muscles from Bla/J and mdx mice demonstrated reduction of the α2-Na,K-ATPase membrane abundance and mRNA expression similar to the diaphragm muscles. In contrast to diaphragm, the α2-Na,K-ATPase protein content was altered in both Bla/J and mdx mice; membrane cholesterol re-distribution was not observed. Thus, the α2-Na,K-ATPase is altered in both Bla/J and mdx mouse models of chronic muscle pathology. However, despite some similarities, the α2-Na,K-ATPase and cholesterol abnormalities are more pronounced in mdx mice.


Subject(s)
Membrane Proteins/genetics , Muscular Dystrophies/genetics , Phosphoproteins/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred mdx , Motor Endplate/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Protein Isoforms/genetics , RNA, Messenger/genetics
7.
Cardiovasc Res ; 116(12): 2009-2020, 2020 10 01.
Article in English | MEDLINE | ID: mdl-31710670

ABSTRACT

AIMS: Acute migraine attack in familial hemiplegic migraine type 2 (FHM2) patients is characterized by sequential hypo- and hyperperfusion. FHM2 is associated with mutations in the Na, K-ATPase α2 isoform. Heterozygous mice bearing one of these mutations (α2+/G301R mice) were shown to have elevated cerebrovascular tone and, thus, hypoperfusion that might lead to elevated concentrations of local metabolites. We hypothesize that these α2+/G301R mice also have increased cerebrovascular hyperaemic responses to these local metabolites leading to hyperperfusion in the affected part of the brain. METHODS AND RESULTS: Neurovascular coupling was compared in α2+/G301R and matching wild-type (WT) mice using Laser Speckle Contrast Imaging. In brain slices, parenchymal arteriole diameter and intracellular calcium changes in neuronal tissue, astrocytic endfeet, and smooth muscle cells in response to neuronal excitation were assessed. Wall tension and smooth muscle membrane potential were measured in isolated middle cerebral arteries. Quantitative polymerase chain reaction, western blot, and immunohistochemistry were used to assess the molecular background underlying the functional changes. Whisker stimulation induced larger increase in blood perfusion, i.e. hyperaemic response, of the somatosensory cortex of α2+/G301R than WT mice. Neuronal excitation was associated with larger parenchymal arteriole dilation in brain slices from α2+/G301R than WT mice. These hyperaemic responses in vivo and ex vivo were inhibited by BaCl2, suggesting involvement of inward-rectifying K+ channels (Kir). Relaxation to elevated bath K+ was larger in arteries from α2+/G301R compared to WT mice. This difference was endothelium-dependent. Endothelial Kir2.1 channel expression was higher in arteries from α2+/G301R mice. No sex difference in functional responses and Kir2.1 expression was found. CONCLUSION: This study suggests that an abnormally high cerebrovascular hyperaemic response in α2+/G301R mice is a result of increased endothelial Kir2.1 channel expression. This may be initiated by vasospasm-induced accumulation of local metabolites and underlie the hyperperfusion seen in FHM2 patients during migraine attack.


Subject(s)
Cerebrovascular Circulation , Middle Cerebral Artery/physiopathology , Migraine with Aura/physiopathology , Neurovascular Coupling , Sodium-Potassium-Exchanging ATPase/metabolism , Vasodilation , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Female , Hyperemia/enzymology , Hyperemia/physiopathology , Male , Mice, Transgenic , Middle Cerebral Artery/enzymology , Migraine with Aura/enzymology , Migraine with Aura/genetics , Mutation , Potassium Channels, Inwardly Rectifying/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
8.
Front Physiol ; 10: 1386, 2019.
Article in English | MEDLINE | ID: mdl-31787904

ABSTRACT

Introduction: When divers are compressed to water depths deeper than 150 meter sea water (msw), symptoms of high-pressure neurological syndrome (HPNS) might appear due to rapid increase in pressure on the central nervous system during compression. The aim of this study was to first operate a new computerized tool, designed to monitor divers' wellbeing and cognitive function, and to record the results. The second aim was to evaluate the feasibility and validity of the Physiopad software and HPNS questionnaires as a new tool for monitoring divers wellbeing in an operational setting, including sensible visualization and presentation of results. Methods: The Physiopad was operated onboard Deep Arctic (TechnipFMC Diving Support Vessel). The diving work was performed between 180 and 207 msw. The data from 46 divers were collected from the HPNS questionnaires, Hand dynamometry test, Critical Flicker Fusion Frequency test (CFFF), Adaptive Visual Analog Scale (AVAS), Simple Math Process (MathProc test), Perceptual Vigilance Task (PVT), and Time Estimation Task (time-wall). Result: Diver's subjective evaluation revealed different symptoms, possibly also HPNS related, which lasted from 1 to 5 days in storage, with the common duration being 1 day. The results from Physiopad battery testing showed no signs of significant neurological alteration. Conclusion: The present study showed that there was no association between subjective measurements of HPNS and neuropsychometric test results. We also confirmed the feasibility of using the computerized test battery to monitor saturation divers at work. The HPNS battery and Physiopad software could be an important tool for monitoring diver's health in the future. This tool was not used during the Bahr Essalam project to operationally evaluate any HPNS effect on divers as data analysis was performed post-project.

9.
Curr Top Membr ; 83: 151-175, 2019.
Article in English | MEDLINE | ID: mdl-31196604

ABSTRACT

The Na,K-ATPase is an enzyme essential for ion homeostasis in all cells. Over the last decades, it has been well-established that in addition to the transport of Na+/K+ over the cell membrane, the Na,K-ATPase acts as a receptor transducing humoral signals intracellularly. It has been suggested that ouabain-like compounds serve as endogenous modulators of this Na,K-ATPase signal transduction. The molecular mechanisms underlying Na,K-ATPase signaling are complicated and suggest the confluence of divergent biological pathways. This review discusses recent updates on the Na,K-ATPase signaling pathways characterized or suggested in vascular smooth muscle cells. The conventional view on this signaling is based on a microdomain structure where the Na,K-ATPase controls the Na,Ca-exchanger activity via modulation of intracellular Na+ in the spatially restricted submembrane space. This, in turn, affects intracellular Ca2+ and Ca2+ load in the sarcoplasmic reticulum leading to modulation of contractility as well as gene expression. An ion-transport-independent signal transduction from the Na,K-ATPase is based on molecular interactions. This was primarily characterized in other cell types but recently also demonstrated in vascular smooth muscles. The downstream signaling from the Na,K-ATPase includes Src and phosphatidylinositol-4,5-bisphosphate 3 kinase signaling pathways and generation of reactive oxygen species. Moreover, in vascular smooth muscle cells the interaction between the Na,K-ATPase and proteins responsible for Ca2+ homeostasis, e.g., phospholipase C and inositol triphosphate receptors, contributes to an integration of the signaling pathways. Recent update on the Na,K-ATPase dependent intracellular signaling and the significance for physiological functions and pathophysiological changes are discussed in this review.


Subject(s)
Muscle, Smooth, Vascular/cytology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Humans , Signal Transduction , src-Family Kinases/metabolism
10.
J Cereb Blood Flow Metab ; 39(8): 1570-1587, 2019 08.
Article in English | MEDLINE | ID: mdl-29513112

ABSTRACT

Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.


Subject(s)
Cerebrovascular Circulation/genetics , Migraine with Aura/metabolism , Muscle Contraction/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Vasoconstriction/genetics , Animals , Calcium/metabolism , Mice , Middle Cerebral Artery/metabolism , Migraine with Aura/genetics , Muscle, Smooth, Vascular/metabolism , Point Mutation
11.
Front Cell Neurosci ; 12: 148, 2018.
Article in English | MEDLINE | ID: mdl-29973870

ABSTRACT

Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient. Post mortem quantitative histopathology was used to examine the effect of stress on parvalbumin (PV)-, calretinin- (CR), calbindin- (CB), cholecystokinin- (CCK), somatostatin-(SST) and neuropeptide Y-positive (NPY+) GABAergic neuron numbers in all cortical subareas of the mPFC (anterior cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) cortexes). In vitro, whole-cell patch-clamp recordings from layer II-III pyramidal neurons of the ventral mPFC was used to examine GABAergic neurotransmission. The cognitive performance of the animals was assessed in a hippocampal-prefrontal-cortical circuit dependent learning task. Stress exposure reduced the number of CCK-, CR- and PV-positive GABAergic neurons in the mPFC, most prominently in the IL cortex. Interestingly, in the stress-resilient animals, we found higher number of neuropeptide Y-positive neurons in the entire mPFC. The electrophysiological analysis revealed reduced frequencies of spontaneous and miniature IPSCs in the anhedonic rats and decreased release probability of perisomatic-targeting GABAergic synapses and alterations in GABAB receptor mediated signaling. In turn, pyramidal neurons showed higher excitability. Anhedonic rats were also significantly impaired in the object-place paired-associate learning task. These data demonstrate that long-term stress results in functional and structural deficits of prefrontal GABAergic networks. Our findings support the concept that fronto-limbic GABAergic dysfunctions may contribute to emotional and cognitive symptoms of MDD.

12.
Alzheimers Dement (N Y) ; 4: 215-223, 2018.
Article in English | MEDLINE | ID: mdl-29955664

ABSTRACT

INTRODUCTION: Treatment with selective serotonin reuptake inhibitors has been suggested to mitigate amyloid-ß (Aß) pathology in Alzheimer's disease, in addition to an antidepressant mechanism of action. METHODS: We investigated whether chronic treatment with paroxetine, a selective serotonin reuptake inhibitor, mitigates Aß pathology in plaque-bearing double-transgenic amyloid precursor protein (APP)swe/presenilin 1 (PS1)ΔE9 mutants. In addition, we addressed whether serotonin depletion affects Aß pathology. Treatments were assessed by measurement of serotonin transporter occupancy and high-performance liquid chromatography. The effect of paroxetine on Aß pathology was evaluated by stereological plaque load estimation and Aß42/Aß40 ratio by enzyme-linked immunosorbent assay. RESULTS: Contrary to our hypothesis, paroxetine therapy did not mitigate Aß pathology, and depletion of brain serotonin did not exacerbate Aß pathology. However, chronic paroxetine therapy increased mortality in APPswe/PS1ΔE9 transgenic mice. DISCUSSION: Our results question the ability of selective serotonin reuptake inhibitor therapy to ameliorate established Aß pathology. The severe adverse effect of paroxetine may discourage its use for disease-modifying purposes in Alzheimer's disease.

13.
Neurobiol Dis ; 104: 50-60, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28461249

ABSTRACT

Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess the longitudinal changes in the number of doublecortin-expressing neuroblasts and number of granular neurons in the dentate gyrus of APPswe/PS1dE9 transgenic mice. Furthermore, we investigated the effect of long-term paroxetine treatment on the number of neuroblasts and granular neurons, hippocampal amyloidosis, and spontaneous alternation behaviour, a measure of spatial working memory, in transgenic mice. We observed no difference in granular neurons between transgenic and wild type mice up till 18months of age, and no differences with age in wild type mice. The number of neuroblasts and the performance in the spontaneous alternation task was reduced in aged transgenic mice. Paroxetine treatment from 9 to 18months of age reduced hippocampal amyloidosis without affecting the number of neuroblasts or granular neurons. These findings suggest that the amyloidosis affects the differentiation of neuroblasts and spatial working memory, independent of changes in total granular neurons. Furthermore, while long-term paroxetine treatment may be able to reduce hippocampal amyloidosis, it appears to have no effect on total number of granular neurons or spatial working memory.


Subject(s)
Aging/pathology , Alzheimer Disease/pathology , Dentate Gyrus/pathology , Neural Stem Cells/pathology , Neurons/pathology , Aging/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Bromodeoxyuridine/metabolism , Cytochrome P-450 CYP2D6 Inhibitors/therapeutic use , Dentate Gyrus/drug effects , Disease Models, Animal , Doublecortin Domain Proteins , Exploratory Behavior/drug effects , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Mutation/genetics , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/drug effects , Neurons/metabolism , Neuropeptides/metabolism , Paroxetine/therapeutic use , Presenilin-1/genetics
14.
Am J Physiol Cell Physiol ; 312(4): C385-C397, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28122732

ABSTRACT

Communication between vascular smooth muscle cells (VSMCs) is dependent on gap junctions and is regulated by the Na-K-ATPase. The Na-K-ATPase is therefore important for synchronized VSMC oscillatory activity, i.e., vasomotion. The signaling between the Na-K-ATPase and gap junctions is unknown. We tested here the hypothesis that this signaling involves cSrc kinase. Intercellular communication was assessed by membrane capacitance measurements of electrically coupled VSMCs. Vasomotion in isometric myograph, input resistance, and synchronized [Ca2+]i transients were used as readout for intercellular coupling in rat mesenteric small arteries in vitro. Phosphorylation of cSrc kinase and connexin43 (Cx43) were semiquantified by Western blotting. Micromole concentration of ouabain reduced the amplitude of norepinephrine-induced vasomotion and desynchronized Ca2+ transients in VSMC in the arterial wall. Ouabain also increased input resistance in the arterial wall. These effects of ouabain were antagonized by inhibition of tyrosine phosphorylation with genistein, PP2, and by an inhibitor of the Na-K-ATPase-dependent cSrc activation, pNaKtide. Moreover, inhibition of cSrc phosphorylation increased vasomotion amplitude and decreased the resistance between cells in the vascular wall. Ouabain inhibited the electrical coupling between A7r5 cells, but pNaKtide restored the electrical coupling. Ouabain increased cSrc autophosphorylation of tyrosine 418 (Y418) required for full catalytic activity whereas pNaKtide antagonized it. This cSrc activation was associated with Cx43 phosphorylation of tyrosine 265 (Y265). Our findings demonstrate that Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc-dependent Cx43 tyrosine phosphorylation.


Subject(s)
Calcium Signaling/physiology , Cell Communication/physiology , Connexin 43/metabolism , Mesenteric Arteries/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , src-Family Kinases/metabolism , Animals , Biological Clocks/physiology , Gene Expression Regulation, Enzymologic/physiology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Phosphorylation , Rats
15.
PLoS One ; 11(11): e0165144, 2016.
Article in English | MEDLINE | ID: mdl-27814403

ABSTRACT

Alzheimer's disease (AD) is a devastating illness characterized by a progressive loss of cognitive, social, and emotional functions, including memory impairments and more global cognitive deficits. Clinical-epidemiological evidence suggests that neuropsychiatric symptoms precede the onset of cognitive symptoms both in humans with early and late onset AD. The behavioural profile promoted by the AD pathology is believed to associate with degeneration of the serotonergic system. Using the APPswe/PS1δE9 model of AD-like pathology starting with 9 months old mice, we characterised long term non-cognitive behavioural changes measured at 9, 12, 15, and 18 months of age and applied principal component analysis on data obtained from open field, elevated plus maze, and social interaction tests. Long-term treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine was applied to assess the role of 5-HT on the behavioural profile; duration of treatment was 9 months, initiated when mice were 9 months of age. Treatment with paroxetine delays the decline in locomotion, in exploration and risk assessment behaviour, found in the APP/PS1 mice. APP/PS1 mice also exhibit low social activity and less aggressiveness, both of which are not affected by treatment with paroxetine. The APP/PS1 behavioural phenotype, demonstrated in this study, only begins to manifest itself from 12 months of age. Our results indicate that treatment with SSRI might ameliorate some of the behavioural deficits found in aged APP/PS1 mice.


Subject(s)
Aging/drug effects , Aging/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Paroxetine/administration & dosage , Presenilin-1/metabolism , Alzheimer Disease/metabolism , Animals , Cognition Disorders/drug therapy , Cognition Disorders/metabolism , Disease Models, Animal , Male , Maze Learning/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Mice, Transgenic , Social Behavior
16.
Medicina (Kaunas) ; 52(3): 139-47, 2016.
Article in English | MEDLINE | ID: mdl-27496183

ABSTRACT

This review aims to clarify the relation between the ratio of omega-6 to omega-3 fatty acids and the development of depression. It is explained how these fatty acids are involved in the production of eicosanoids and how these fatty acids can affect the membrane fluidity, by their incorporation into membrane phospholipids. In addition, it is described how omega-3 derivatives are shown to regulate gene transcription. In view of the pathophysiology of depression, the mechanisms of how an altered ratio of omega-6 to omega-3 could be involved in depression are discussed. Possible mechanisms could include an increased production of pro-inflammatory cytokines, which can activate the HPA axis and a changed membrane fluidity, which potentially affects membrane bound enzymes, ion channels, receptor activity and neurotransmitter binding. In view of clinical trials, it is also discussed whether omega-3 supplementation could have a beneficial effect in the treatment of depressive patient. There are strong indications that an increased ratio of membrane omega-6 to omega-3 is involved in the pathogenesis of depression and so far, omega-3 supplementation has shown positive effects in clinical trials.


Subject(s)
Depressive Disorder, Major/metabolism , Depressive Disorder, Major/therapy , Dietary Supplements , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-6/metabolism , Clinical Trials as Topic , Cytokines/biosynthesis , Diet, Western , Dopamine/biosynthesis , Eicosanoids/biosynthesis , Gene Expression Regulation , Humans , Hypothalamo-Hypophyseal System/metabolism , Membrane Fluidity , Phospholipids/biosynthesis , Serotonin/biosynthesis
17.
J Gen Physiol ; 147(2): 175-88, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26755774

ABSTRACT

The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated differently.


Subject(s)
Isoenzymes/metabolism , Muscle, Skeletal/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Male , Membrane Potentials/physiology , Membrane Proteins/metabolism , Muscle Contraction/physiology , Phosphoproteins/metabolism , Phosphorylation/physiology , Rats , Rats, Wistar , Receptors, Nicotinic/metabolism , Sarcolemma/metabolism
18.
Am J Physiol Regul Integr Comp Physiol ; 309(8): R814-23, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26269522

ABSTRACT

Major depression is known to be associated with cardiovascular abnormalities, and oxidative stress has been suggested to play a role. We tested the hypothesis that antidepressant treatment reduces oxidative stress and endothelial dysfunctions in the chronic mild stress (CMS) model of depression in rats. Rats with >30% reduction in sucrose intake after 4 wk of CMS were defined in the study as CMS-susceptible and compared with unstressed controls. Sixteen CMS-susceptible and eight unstressed rats were treated during weeks 5 to 8 of the CMS protocol with escitalopram. Escitalopram-treated rats with >20% recovery in the sucrose consumption during the last 2 wk of treatment were defined as escitalopram responders. Rats that did not reach these criteria were defined as escitalopram nonresponders. In the open field test, escitalopram responders demonstrated anxiolytic effect of treatment. In mesenteric small arteries, escitalopram affected neither NO nor cyclooxygenase-1 (COX-1)-mediated vasodilation. Escitalopram potentiated endothelium-dependent hyperpolarization-like response, which was suppressed in the vehicle-treated CMS-susceptible rats and reduced COX-2-dependent relaxation, which was elevated in the vehicle-treated CMS-susceptible rats. Escitalopram did not affect blood pressure and heart rate, which were elevated in the vehicle-treated CMS-susceptible rats. Oxidative stress markers were changed in association with CMS in liver, heart, and brain. Escitalopram normalized oxidative stress markers in the majority of tissues. This study demonstrates that the antidepressant effect of escitalopram is associated with partial improvement of endothelial function in small arteries affecting COX-2 and endothelium-dependent hyperpolarization-like pathways.


Subject(s)
Citalopram/administration & dosage , Citalopram/pharmacology , Depression/drug therapy , Endothelium, Vascular/drug effects , Stress, Physiological/physiology , Animals , Cyclooxygenase Inhibitors/pharmacology , Drug Administration Schedule , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Liver/drug effects , Liver/metabolism , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/pharmacology , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
19.
Biomed Res Int ; 2015: 720172, 2015.
Article in English | MEDLINE | ID: mdl-25654120

ABSTRACT

This study examines the isoform-specific effects of short-term hindlimb suspension (HS) on the Na,K-ATPase in rat soleus muscle. Rats were exposed to 24-72 h of HS and we analyzed the consequences on soleus muscle mass and contractile parameters; excitability and the resting membrane potential (RMP) of muscle fibers; the electrogenic activity, protein, and mRNA content of the α1 and α2 Na,K-ATPase; the functional activity and plasma membrane localization of the α2 Na,K-ATPase. Our results indicate that 24-72 h of HS specifically decreases the electrogenic activity of the Na,K-ATPase α2 isozyme and the RMP of soleus muscle fibers. This decrease occurs prior to muscle atrophy or any change in contractile parameters. The α2 mRNA and protein content increased after 24 h of HS and returned to initial levels at 72 h; however, even the increased content was not able to restore α2 enzyme activity in the disused soleus muscle. There was no change in the membrane localization of α2 Na,K-ATPase. The α1 Na,K-ATPase electrogenic activity, protein and mRNA content did not change. Our findings suggest that skeletal muscle use is absolutely required for α2 Na,K-ATPase transport activity and provide the first evidence that Na,K-ATPase alterations precede HS-induced muscle atrophy.


Subject(s)
Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscular Disorders, Atrophic/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Body Weight , Hindlimb Suspension , Isoenzymes/metabolism , Male , Membrane Potentials , Muscle Contraction , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology , Nicotine/pharmacology , Organ Size , Rats, Wistar
20.
J Cardiovasc Pharmacol ; 65(4): 299-307, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25469807

ABSTRACT

Major depression and cardiovascular diseases are 2 of the most prevalent health problems in Western society, and an association between them is generally accepted. Although the specific mechanism behind this comorbidity remains to be elucidated, it is clear that it has a complex multifactorial character including a number of neuronal, humoral, immune, and circulatory pathways. Depression-associated cardiovascular abnormalities associate with cardiac dysfunctions and with changes in peripheral resistance. Although cardiac dysfunction in association with depression has been studied in detail, little attention was given to structural and functional changes in resistance arteries responsible for blood pressure control and tissue perfusion. This review discusses recent achievements in studies of depression-associated abnormalities in resistance arteries in humans and animal experimental models. The changes in arterial structure, contractile and relaxing functions associated with depression symptoms are discussed, and the role of these abnormalities for the pathology of major depression and cardiovascular diseases are suggested.


Subject(s)
Cardiovascular Diseases , Depressive Disorder, Major , Vascular Resistance/physiology , Animals , Blood Vessels/physiology , Blood Vessels/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/psychology , Comorbidity , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...