Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Xenobiotica ; 51(11): 1255-1263, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34461800

ABSTRACT

Intra-tumoral (I-TUMOUR) delivery is being widely explored for novel anti-cancer agents. This route is anticipated to result in high tumour concentrations leading to better efficacy and safety. Prediction of human systemic pharmacokinetics (PK) from non-clinical species facilitates understanding of pharmacokinetic-pharmacodynamic relationships, efficient dose selection, and risk assessment of novel drugs. However, there is limited knowledge on the predictability of human pharmacokinetics following I-TUMOUR delivery.In this publication, we present a case study wherein human systemic PK of a novel agent administered intra-tumourally was prospectively predicted and compared with observed human PK.Simple allometry was used to project the human clearance (10.5 mL/min/kg) and steady-state volume of distribution (1.4 L/kg) after intravenous (IV) dosing. Using these IV PK parameters and assuming rapid absorption and complete I-TUMOUR bioavailability, human plasma PK profile was simulated. The projected 30 min concentrations and AUC(0-6h) were within 1.9 to 2.5-fold and 1 to 1.4-fold of the observed PK indicating a reasonable concordance between predicted and observed PK.To our knowledge, this is the first article that prospectively projected human pharmacokinetics after I-TUMOUR dosing. The results from this study indicate that similar approaches can be used to project the human PK of other I-TUMOUR agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Pharmaceutical Preparations , Biological Availability , Humans , Neoplasms/drug therapy , Pharmacokinetics , Prospective Studies
2.
Biopharm Drug Dispos ; 39(6): 289-297, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29870054

ABSTRACT

Chronic inflammation is a key driver of cancer development. Nitrite levels, which are regulated by inducible nitric oxide synthase (iNOS), play a critical role in inflammation. While the anti-oxidant and anti-inflammatory effects of curcumin, a natural product present in the roots of Curcuma longa have been studied widely, the acute pharmacokinetics (PK) and pharmacodynamics (PD) of curcumin in suppressing pro-inflammatory markers and epigenetic modulators remain unclear. This study evaluated the PK and PD of curcumin-induced suppression of lipopolysaccharide (LPS)-mediated inflammation in rat lymphocytes. LPS was administered intravenously either alone or with curcumin to female Sprague-Dawley rats. Plasma samples were analysed for curcumin concentration and mRNA expression was quantified in lymphocytes. The relative gene expression of several inflammatory and epigenetic modulators was analysed. To investigate the relationship between curcumin concentration and iNOS, TNF-α, and IL-6 gene expression, PK/PD modeling using Jusko's indirect response model (IDR) integrating transit compartments (TC) describing the delayed response was conducted. The concentration-time profile of curcumin exhibited a bi-exponential decline, which was well described by a two-compartmental pharmacokinetic model. Importantly the results demonstrate that LPS induced gene expression of pro-inflammatory markers in lymphocytes, with peak expression at approximately 3 h and curcumin suppressed the gene expression in animals administered with LPS. These effects were well captured using the IDR model and an IDR model with the transit compartments. In summary, the PK/PD modeling approach could potentially provide a robust quantitative framework for evaluating the acute anti-inflammatory and epigenetic effects of curcumin in future clinical trials.


Subject(s)
Curcumin/pharmacology , Curcumin/pharmacokinetics , Epigenesis, Genetic/drug effects , Gene Expression Regulation/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
3.
Pharmacol Res ; 114: 175-184, 2016 12.
Article in English | MEDLINE | ID: mdl-27818231

ABSTRACT

Epigenetic silencing of tumor suppressor genes is a phenomenon frequently observed in multiple cancers. Ras-association domain family 1 isoform A (RASSF1A) is a well-characterized tumor suppressor that belongs to the Ras-association domain family. Several studies have demonstrated that hypermethylation of the RASSF1A promoter is frequently observed in lung, prostate, and breast cancers. Phenethyl isothiocyanate (PEITC), a phytochemical abundant in cruciferous vegetables, possesses chemopreventive activities; however, its potential involvement in epigenetic mechanisms remains elusive. The present study aimed to examine the role of PEITC in the epigenetic reactivation of RASSF1A and the induction of apoptosis in LNCaP cells. LNCaP cells were treated for 5days with 0.01% DMSO, 2.5 or 5µM PETIC or 2.5µM azadeoxycytidine (5-Aza) with 0.5µM trichostatin A (TSA). We evaluated the effects of these treatments on CpG demethylation using methylation-specific polymerase chain reaction (MSP) and bisulfite genomic sequencing (BGS). CpG demethylation was significantly enhanced in cells treated with 5µM PEITC and 5-Aza+TSA; therefore, the latter treatment was used as a positive control in subsequent experiments. The decrease in RASSF1A promoter methylation correlated with an increase in expression of the RASSF1A gene in a dose-dependent manner. To confirm that promoter demethylation was mediated by DNA methyltransferases (DNMTs), we analyzed the expression levels of DNMTs and histone deacetylases (HDACs) at the gene and protein levels. PEITC reduced DNMT1, 3A and 3B protein levels in a dose-dependent manner, and 5µM PEITC significantly reduced DNMT3A and 3B protein levels. HDAC1, 2, 4 and 6 protein expression was also inhibited by 5µM PEITC. The combination of 5-Aza and TSA, a DNMT inhibitor and a HDAC inhibitor, respectively, was used as a positive control as this treatment significantly inhibited both HDACs and DNMTs. The function of RASSF1A reactivation in promoting apoptosis and inducing G2/M cell cycle arrest was analyzed using flow-cytometry analysis with Annexin V and propidium iodide (PI). Growth inhibition effect on LNCaP cells were investigated by colony formation assay. In addition, we analyzed p21, caspase-3 and 7, Bax, and Cyclin B1 protein levels. Flow-cytometry analysis of cells stained with PI alone demonstrated that 5µM PEITC promotes early apoptosis and G2/M cell cycle arrest. Flow cytometry analysis of cells stained with Annexin V and PI also demonstrated an increased proportion of cells in early apoptosis in cells treated with 5µM PEITC or 5-Aza with TSA. PEITC and efficiently inhibit colony numbers and total area. In addition, 5µM PEITC significantly enhanced p21, caspase-3, 7 and Bax levels and reduced Cyclin B1 expression compared with the control group. Collectively, the results of our study suggest that PEITC induces apoptosis in LNCaP cells potentially by reactivating RASSF1A via epigenetic mechanisms.


Subject(s)
Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , Epigenesis, Genetic/drug effects , Isothiocyanates/pharmacology , Prostatic Neoplasms/drug therapy , Tumor Suppressor Proteins/genetics , Cell Line, Tumor , DNA Methylation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Promoter Regions, Genetic/drug effects , Prostatic Neoplasms/genetics
4.
Curr Pharmacol Rep ; 1(2): 129-139, 2015 04.
Article in English | MEDLINE | ID: mdl-26457241

ABSTRACT

Curcumin (diferuloylmethane), a polyphenolic compound, is a component of Curcuma longa, commonly known as turmeric. It is a well-known anti-inflammatory, anti-oxidative, and anti-lipidemic agent and has recently been shown to modulate several diseases via epigenetic regulation. Many recent studies have demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies, such as neurocognitive disorders, inflammation, obesity, and cancers. Epigenetic changes involve changes in DNA methylation, histone modifications, or altered microRNA expression patterns which are known to be interconnected and play a key role in tumor progression and failure of conventional chemotherapy. The majority of epigenetic changes are influenced by lifestyle and diets. In this regard, dietary phytochemicals as dietary supplements have emerged as a promising source that are able to reverse these epigenetic alterations, to actively regulate gene expression and molecular targets that are known to promote tumorigenesis, and also to prevent age-related diseases through epigenetic modifications. There have been several studies which reported the role of curcumin as an epigenetic regulator in neurological disorders, inflammation, and in diabetes apart from cancers. The epigenetic regulatory roles of curcumin include (1) inhibition of DNA methyltransferases (DNMTs), which has been well defined from the recent studies on its function as a DNA hypomethylating agent; (2) regulation of histone modifications via regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs); and (3) regulation of micro RNAs (miRNA). This review summarizes the current knowledge on the effect of curcumin in the treatment and/or prevention of inflammation, neurodegenerative diseases, and cancers by regulating histone deacetylases, histone acetyltransferases, and DNA methyltransferases.

5.
J Pharmacokinet Pharmacodyn ; 42(4): 401-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26138223

ABSTRACT

3,3'-Diindolylmethane (DIM) has been investigated as a potential anti-cancer chemopreventive agent in many preclinical and clinical studies. In this study, we sought to characterize the pharmacokinetics of DIM and to build a pharmacokinetic (PK) and pharmacodynamic (PD) model of the DIM-induced gene expression of phase II drug metabolizing enzymes (DME), which potentially links DIM's molecular effects to its in vivo chemopreventive efficacy. DIM (10 mg/kg) was administered intravenously (i.v.) to male Sprague-Dawley rats and blood samples were collected at selected time points for 48 h. The plasma concentration of DIM was determined using a validated HPLC method. The mRNA expression of NQO1, GSTP1 and UGT1A1 in blood lymphocytes was measured using quantitative PCR. An indirect response model was employed to relate the concentration of DIM to the expression of the genes NQO1, GSTP1 and UGT1A1, which were chosen as PD markers for DIM. After i.v. administration, the plasma concentration of DIM declined quickly, and the expression of target genes increased significantly, peaking at 1-2 h and then returning to basal levels after 24 h. The parameters in the PK-PD model were estimated. The PK-PD model aptly described the time delay and magnitude of gene expression induced by DIM. Our results indicate that DIM is effective at inducing various phase II DME, which are capable of detoxify carcinogens. This PK-PD modeling approach provides a framework for evaluating the acute effects of DIM or other similar drugs in clinical trials.


Subject(s)
Anticarcinogenic Agents/pharmacokinetics , Gene Expression Regulation, Enzymologic/drug effects , Glucuronosyltransferase/genetics , Glutathione S-Transferase pi/genetics , Indoles/pharmacokinetics , Models, Biological , NAD(P)H Dehydrogenase (Quinone)/genetics , Animals , Anticarcinogenic Agents/blood , Anticarcinogenic Agents/pharmacology , Indoles/blood , Indoles/pharmacology , Injections, Intravenous , Male , Metabolic Detoxication, Phase II , Rats, Sprague-Dawley
6.
Cell Biosci ; 5: 24, 2015.
Article in English | MEDLINE | ID: mdl-26101583

ABSTRACT

BACKGROUND: Aberrant DNA methylation at the 5-carbon on cytosine residues (5mC) in CpG dinucleotides is probably the most extensively characterized epigenetic modification in colon cancer. It has been suggested that the loss of adenomatous polyposis coli (APC) function initiates tumorigenesis and that additional genetic and epigenetic events are involved in colon cancer progression. We aimed to study the genome-wide DNA methylation profiles of intestinal tumorigenesis in Apc(min/+) mice. RESULTS: Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was used to determine the global profile of DNA methylation changes in Apc(min/+) mice. DNA was extracted from adenomatous polyps from Apc(min/+) mice and from normal intestinal tissue from age-matched Apc(+/+) littermates, and the MeDIP-seq assay was performed. Ingenuity Pathway Analysis (IPA) software was used to analyze the data for gene interactions. A total of 17,265 differentially methylated regions (DMRs) displayed a ≥ 2-fold change (log2) in methylation in Apc(min/+) mice; among these DMRs, 9,078 (52.6 %) and 8,187 (47.4 %) exhibited increased and decreased methylation, respectively. Genes with altered methylation patterns were mainly mapped to networks and biological functions associated with cancer and gastrointestinal diseases. Among these networks, several canonical pathways, such as the epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathways, were significantly associated with genome-wide methylation changes in polyps from Apc(min/+) mice. The identification of certain differentially methylated molecules in the EMT and Wnt/ß-catenin pathways, such as APC2 (adenomatosis polyposis coli 2), SFRP2 (secreted frizzled-related protein 2), and DKK3 (dickkopf-related protein 3), was consistent with previous publications. CONCLUSIONS: Our findings indicated that Apc(min/+) mice exhibited extensive aberrant DNA methylation that affected certain signaling pathways, such as the EMT and Wnt/ß-catenin pathways. The genome-wide DNA methylation profile of Apc(min/+) mice is informative for future studies investigating epigenetic gene regulation in colon tumorigenesis and the prevention of colon cancer.

7.
Chem Res Toxicol ; 27(12): 2036-43, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25387343

ABSTRACT

The role of phytochemicals in preventive and therapeutic medicine is a major area of scientific research. Several studies have illustrated the mechanistic roles of phytochemicals in Nrf2 transcriptional activation. The present study aims to examine the importance of the transcription factor Nrf2 by treating peritoneal macrophages from Nrf2(+/+) and Nrf2(-/-) mice ex vivo with phenethyl isothiocyanate (PEITC) and curcumin (CUR). The peritoneal macrophages were pretreated with the drugs and challenged with lipopolysaccharides (LPSs) alone and in combination with PEITC or CUR to assess their anti-inflammatory and antioxidative effects based on gene and protein expression in the treated cells. LPS treatment resulted in an increase in the expression of inflammatory markers such as cycloxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in both Nrf2(+/+) and Nrf2(-/-) macrophages, detected by quantitative polymerase chain reaction (qPCR). Nrf2(+/+) macrophages treated with PEITC and CUR exhibited a significant decrease in the expression of these anti-inflammatory genes along with an increase in the expression of hemeoxygenase-1 (HO-1), which is an antioxidative stress gene downstream of the Nrf2 transcription factor battery. Although there was no significant decrease in the expression of the anti-inflammatory genes or an increase in HO-1 expression in Nrf2(-/-) macrophages treated with either PEITC or CUR, there was a significant decrease in the protein expression of COX-2 and an increase in the expression of HO-1 in Nrf2(+/+) macrophages treated with PEITC compared to that with CUR treatment. No significant changes were observed in the macrophages from knockout animals. Additionally, there was a significant decrease in LPS-induced IL-6 and TNF-α production following PEITC treatment compared with that following CUR in Nrf2(+/+) macrophages, whereas no change was observed in the macrophages from knockout animals. The results from qPCR, western blot, and ELISA analyses in macrophages from Nrf2(+/+) and Nrf2 (-/-) mice indicate that Nrf2 plays an important role in the anti-inflammatory and antioxidative effects of PEITC and CUR, as observed by their decreased activities in Nrf2(-/-) macrophages.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Curcumin/pharmacology , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/physiology , Animals , Base Sequence , DNA Primers , Gene Expression Regulation/drug effects , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Nitrites/antagonists & inhibitors , Nitrites/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Chem Res Toxicol ; 27(1): 34-41, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24304388

ABSTRACT

Inflammation plays a critical defensive role in the human body. However, uncontrolled or aberrant inflammatory responses contribute to various acute and chronic diseases. The Nrf2-ARE pathway plays a pivotal role in the regulation of inflammatory markers, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). On the basis of this concept, we synthesized a novel anti-inflammatory 4,6-bis ((E)-4-hydroxy-3-methoxystyryl)-1-phenethylpyrimidine-2(1H)-thione (HPT), and in vitro experiments using HepG2-C8 ARE-luciferase-transfected cells demonstrated the induction of Nrf2-ARE activity. In lipopolysaccharide (LPS)-induced RAW 264.7 cells, HPT treatment reduced the production of nitric oxide (NO) as well as the protein and mRNA expression levels of COX-2 and iNOS, in a dose-dependent manner. In addition, HPT suppressed the mRNA expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6. In LPS-induced macrophages, HPT inhibited COX-2 and iNOS by blocking the activation of p38 and c-Jun NH2-terminal kinase (JNK) but not extracellular signal-regulated kinase (ERK1/2). Furthermore, an in vivo anti-inflammatory study was performed using a TPA-induced skin inflammation mouse model, and the results showed that HPT reduced TPA-induced inflammation and attenuated the expression of COX-2 and iNOS in TPA-induced mouse skin tissue. Thus, HPT demonstrated anti-inflammatory activity both in LPS-induced RAW 264.7 cells and TPA-stimulated mouse skin and may therefore serve as a potential anti-inflammatory agent.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Pyrimidines/pharmacology , Thiones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Female , Hep G2 Cells , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Pyrimidines/chemistry , Structure-Activity Relationship , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/antagonists & inhibitors , Thiones/chemistry , Tumor Cells, Cultured
9.
Chem Res Toxicol ; 25(8): 1574-80, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22780686

ABSTRACT

Ginseng has long been used in Asian countries for more than 2000 years. Currently, in the "Western World or Western Medicines", many reports have indicated that they have used herbal medicines, and ginseng is one of the most popular herbs. Several recent reports have indicated that the antioxidant/antioxidative stress activities of ginseng play a role in the benefits of ginseng; however, the precise mechanism is lacking. The antioxidant response element (ARE) is a critical regulatory element for the expression of many antioxidant enzymes and phase II/III drug metabolizing/transporter genes, mediated by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The aim of this study was to examine the potential activation and synergism of Nrf2-ARE-mediated transcriptional activity between three common ginsenosides present in ginseng, ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), and ginsenoside 20(S)-protopanaxatriol (20S). We tested whether these ginsenosides and their combinations could induce Nrf2-ARE activities in HepG2-C8 cells with stably transfected ARE luciferase reporter gene. Cell proliferation, antioxidant and ARE activities, Western blotting of Nrf2 protein, and qPCR of mRNA of Nrf2 were conducted for Rb1, Rg1, and 20S as well as the combinations of 20S with Rb1 or Rg1. To determine the combination effects, the combination index (CI) was calculated. Rb1 and Rg1 are relatively nontoxic to the cells, while 20S at 50 µM or above significantly inhibited the cell proliferation. Rb1, Rg1, or 20S induced total antioxidant activity and ARE activity in a concentration-dependent manner. Furthermore, combinations of 20S with either Rb1 or Rg1 induced total antioxidant and ARE activity synergistically. The induction of Nrf2 protein and mRNA was also found to be synergistic with the combination treatments. In summary, in this study, we show that ginsenosides Rb1, Rg1, and 20S possess antioxidant activity, transcriptionally activating ARE as well as the potential of synergistic activities. The Nrf2-ARE-mediated antioxidant pathway could play a role for the overall antioxidative stress activities, which could be important for ginseng's health beneficial effects such as cancer chemopreventive activities.


Subject(s)
Antioxidants/chemistry , Ginsenosides/chemistry , NF-E2-Related Factor 2/metabolism , Sapogenins/chemistry , Animals , Antioxidant Response Elements/drug effects , Antioxidants/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Ginsenosides/pharmacology , Hep G2 Cells , Humans , Mice , NF-E2-Related Factor 2/genetics , Panax/chemistry , Sapogenins/pharmacology
10.
Mol Carcinog ; 51(10): 761-70, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21837756

ABSTRACT

Indole-3-carbinol (I3C) found abundantly in crucifers has been shown to possess anti-cancer effects. The present study aims to examine the chemopreventive effects and the molecular mechanism of I3C, particularly the anti-oxidative stress pathway regulated by nuclear erythroid related factor 2 (Nrf2). HepG2-C8-ARE-luciferase cells were used for Nrf2-ARE activity. TRAMP C1 cells were used to investigate the effects of I3C on Nrf2-mediated genes. To test the chemopreventive efficacy of I3C, transgenic adenocarcinoma of mouse prostate (TRAMP) mice were fed with 1% I3C supplemented diet for 12 or 16 wk. The expression of Nrf2 and its downstream target genes, cell cycle and apoptosis genes were investigated using quantitative real-time polymerase chain reaction (qPCR). The protein expressions of these biomarkers were also investigated using Western blotting. I3C induced antioxidant response element (ARE)-luciferase activity in a dose-dependent manner. Treatments of TRAMP C1 cells with I3C also resulted in the induction of Nrf2-mediated genes. I3C significantly suppressed the incidence of palpable tumor and reduced the genitourinary weight in TRAMP mice. Western blots and qPCR analyses of prostate tissues showed that I3C induced the expression of Nrf2, NAD(P)H quinine oxidoreductase 1 (NQO-1) as well as cell cycle and apoptosis related biomarkers in I3C-fed TRAMP mice. This study demonstrated that the effectiveness of I3C as prostate cancer chemoprevention agent via up-regulation of a novel Nrf2-mediated anti-oxidative stress pathway.


Subject(s)
Adenocarcinoma/drug therapy , Anticarcinogenic Agents/pharmacology , Indoles/pharmacology , NF-E2-Related Factor 2/metabolism , Prostatic Neoplasms/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/prevention & control , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Dietary Supplements , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mice, Transgenic , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/genetics , Oxidative Stress , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/prevention & control , Response Elements/drug effects
11.
AAPS J ; 13(4): 606-14, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21938566

ABSTRACT

Curcumin (CUR), a major bioactive polyphenolic component from turmeric curry, Curcuma longa, has been shown to be a potent anti-cancer phytochemical with well-established anti-inflammatory and anti-oxidative stress effects. Chromatin remodeling-related epigenetic regulation has emerged as an important mechanism of carcinogenesis, chemoprevention, and chemotherapy. CUR has been found to inhibit histone acetyltransferase activity, and it was also postulated to be a potential DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitor. In this study, we show that when human prostate LNCaP cells were treated with CUR, it led to demethylation of the first 14 CpG sites of the CpG island of the Neurog1 gene and restored the expression of this cancer-related CpG-methylation epigenome marker gene. At the protein level, CUR treatment had limited effects on the expression of epigenetic modifying proteins MBD2, MeCP2, DNMT1, and DNMT3a. Using ChIP assay, CUR decreased MeCP2 binding to the promoter of Neurog1 dramatically. CUR treatment showed different effects on the protein expression of HDACs, increasing the expression of HDAC1, 4, 5, and 8 but decreasing HDAC3. However, the total HDAC activity was decreased upon CUR treatment. Further analysis of the tri-methylation of histone 3 at lysine 27 (H3K27me3) showed that CUR decreased the enrichment of H3K27me3 at the Neurog1 promoter region as well as at the global level. Taken together, our present study provides evidence on the CpG demethylation ability of CUR on Neurog1 while activating its expression, suggesting a potential epigenetic modifying role for this phytochemical compound in human prostate cancer cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , CpG Islands , Curcumin/pharmacology , DNA Methylation , Epigenesis, Genetic , Gene Expression/drug effects , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , Base Sequence , Blotting, Western , Cell Line, Tumor , Chromatin Immunoprecipitation , DNA Modification Methylases/antagonists & inhibitors , DNA Primers , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...