Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(12): e22964, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076107

ABSTRACT

Unknown to many, the Philippines is host to a few remaining accessions of the underutilised and understudied cereal foxtail millet (Setaria italica (L.) P. Beauv.). We collected together accessions of this crop from different eco-geographical locations within the Philippines, along with a few accessions from Lanyu, Taiwan, to undertake a study of their nutritional value and genetic diversity. All accessions were field-grown in 2022, dry season (DS) at the Institute of Plant Breeding (IPB) Experiment Station, Los Baños, Laguna, Philippines. The accessions were tested for micronutrients, including Zn and Fe, nitrogen as a proxy for protein, ß-carotene, phytic acid, and a number of phenolic compounds with known nutritional potential. Of the 20 accessions tested, the accessions Bayaras and GB61438 had the highest level of Zn (107.1 mg/kg) and Fe (70.52 mg/kg), respectively, higher than levels found in traditional rice varieties. For ß-carotene the highest concentration was found in the accession Balles (∼10 µg/g). Twelve phenolic compounds were detected, with catechin, syringic acid, ferulic acid and kaempferol having the highest concentrations. To assess the genetic diversity, we sequenced a set of eight samples selected from among the accessions to a depth of at least 25-fold using whole-genome re-sequencing. Analysis of the population structure, using genome-wide, high-quality SNPs, showed modest diversity among the accessions, with two unadmixed groups. The accessions are monophyletic relative to their earliest common ancestor, with the very light brown accessions emerging earlier than the light brown and reddish-brown varieties. Analysis of zinc-regulated, iron-regulated transporter-like protein (ZIP) transporters within the foxtail millet reference sequence, var. Yugu1 identified 17 putative ZIP transporters. Variant calling identified SNPs primarily within 3' and 5' regions, and introns, indicating variation between foxtail millet accessions within regulatory gene regions rather than in structural proteins. The local foxtail millet accessions, therefore, represent a potential alternative source of nutrients which may help in addressing malnutrition in the Philippines.

2.
Plant Genome ; 16(4): e20360, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589249

ABSTRACT

While considerable breeding effort has focused on increasing the yields of staple crops such as rice and the levels of micronutrients such as iron and zinc, breeding to address the problems of the double-burden of malnutrition has received less attention. Pigmented rice has higher nutritional value and greater health benefits compared to white rice. However, the genetic associations underlying pericarp coloration and accumulation of nutritionally valuable compounds is still poorly understood. Here we report the targeted genetic analysis of 364 rice accessions, assessing the genetic relationship between pericarp coloration (measured using multi-spectral imaging) and a range of phenolic compounds with potential nutritional and health-promoting characteristics. A genome-wide association study resulted in the identification of over 280 single nucleotide polymorphisms (SNPs) associated with the traits of interest. Many of the SNPs were associated with more than one trait, colocalization occurring between nutritional traits, and nutritional and color-related traits. Targeted association analysis identified 67 SNPs, located within 52 candidate genes and associated with 24 traits. Six haplotypes identified within the genes Rc/bHLH17 and OsIPT5 indicated that these genes have an important role in the regulation of a wide range of phenolic compounds, and not only those directly conferring pericarp color. These identified genetic linkages between nutritionally valuable phenolic compounds and pericarp color present not only a valuable resource for the enhancement of the nutritional value of rice but an easy method of selection of suitable genotypes.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Plant Breeding , Pigmentation/genetics , Seeds/genetics
3.
Food Chem Adv ; 1: None, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36570628

ABSTRACT

Over half the world population relies on rice for energy, but being a carbohydrate-based crop, it offers limited nutritional benefits. To achieve nutritional security targets in Asia, we must understand the genetic variation in multi-nutritional properties with therapeutic properties and deploy this knowledge to future rice breeding. High throughput, VideometerLAB spectral imaging data has been effective in estimating total anthocyanin content, particularly bound anthocyanin content, using the high prediction power of partial least square (PLS) regression models. Multi-pronged nutritional properties of phenolic compounds and minerals, together with videometerLAB features, were utilized to develop models to classify a collection of black rice varieties into three distinct nutritional quality ideotypes. These derived models for black rice diversity panels were created utilizing videometerLAB data (L, A, B parameters), selected phenolic types (total phenolics, total anthocyanins, and bound flavonoids), and minerals (Molybdenum and Phosphorous). Random forest and artificial neural network models depicted the multi-nutritional features of black rice with 85.35 and 99.9% accuracy, respectively. These prediction algorithms would help rice breeders strategically breed nutritionally valuable genotypes based on simple, high-through-put videometerLAB readings and a small number of nutritional assays.

4.
Biosensors (Basel) ; 12(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36290966

ABSTRACT

The yellow rust of wheat (caused by Puccinia striiformis f. sp. tritici) is a devastating fungal infection that is responsible for significant wheat yield losses. The main challenge with the detection of this disease is that it can only be visually detected on the leaf surface between 7 and 10 days after infection, and by this point, counter measures such as the use of fungicides are generally less effective. The hypothesis of this study is to develop and use a compact electrochemical-based biosensor for the early detection of P. striiformis, thus enabling fast countermeasures to be taken. The biosensor that was developed consists of three layers. The first layer mimics the wheat leaf surface morphology. The second layer consists of a sucrose/agar mixture that acts as a substrate and contains a wheat-derived terpene volatile organic compound that stimulates the germination and growth of the spores of the yellow rust pathogen P. s. f. sp. tritici. The third layer consists of a nonenzymatic glucose sensor that produces a signal once invertase is produced by P. striiformis, which comes into contact with the second layer, thereby converting sucrose to glucose. The results show the proof that this innovative biosensor can enable the detection of yellow rust spores in 72 h.


Subject(s)
Basidiomycota , Biosensing Techniques , Fungicides, Industrial , Volatile Organic Compounds , Puccinia , beta-Fructofuranosidase , Agar , Plant Diseases/microbiology , Triticum/microbiology , Sucrose , Terpenes , Glucose
5.
BMC Plant Biol ; 22(1): 220, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484480

ABSTRACT

BACKGROUND: Tef (Eragrostis tef) is a tropical cereal domesticated and grown in the Ethiopian highlands, where it has been a staple food of Ethiopians for many centuries. Food insecurity and nutrient deficiencies are major problems in the country, so breeding for enhanced nutritional traits, such as Zn content, could help to alleviate problems with malnutrition. RESULTS: To understand the breeding potential of nutritional traits in tef a core set of 24 varieties were sequenced and their mineral content, levels of phytate and protein, as well as a number of nutritionally valuable phenolic compounds measured in grain. Significant variation in all these traits was found between varieties. Genome wide sequencing of the 24 tef varieties revealed 3,193,582 unique SNPs and 897,272 unique INDELs relative to the tef reference var. Dabbi. Sequence analysis of two key transporter families involved in the uptake and transport of Zn by the plant led to the identification of 32 Zinc Iron Permease (ZIP) transporters and 14 Heavy Metal Associated (HMA) transporters in tef. Further analysis identified numerous variants, of which 14.6% of EtZIP and 12.4% of EtHMA variants were non-synonymous changes. Analysis of a key enzyme in flavanol synthesis, flavonoid 3'-hydroxylase (F3'H), identified a T-G variant in the tef homologue Et_s3159-0.29-1.mrna1 that was associated with the differences observed in kaempferol glycoside and quercetin glycoside levels. CONCLUSION: Wide genetic and phenotypic variation was found in 24 Ethiopian tef varieties which would allow for breeding gains in many nutritional traits of importance to human health.


Subject(s)
Eragrostis , Chromosome Mapping , Edible Grain/genetics , Eragrostis/genetics , Ethiopia , Genetic Variation , Humans , Plant Breeding
6.
Phytopathology ; 112(4): 842-851, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34698539

ABSTRACT

Partial resistance to the biotrophic fungal pathogen Claviceps purpurea, causal agent of ergot, has been found that colocates with mutant alleles of the wheat Reduced height (Rht) loci on chromosomes 4B and 4D. These Rht loci represent the wheat orthologs of the Arabidopsis Della genes. To investigate the role of the Rht mutant DELLA proteins in ergot resistance, we assessed C. purpurea infection in wheat near-isogenic lines (NILs) carrying the gibberellic acid (GA)-insensitive semidwarf alleles Rht-B1b and Rht-D1b and the severe dwarf alleles Rht-B1c and Rht-D1c. NILs of the GA-sensitive alleles Rht8 (chromosome 2D) and Rht12 (chromosome 5A) were also included. A general trend toward increased resistance to C. purpurea, with smaller and lighter sclerotia, was observed on the NILs Rht-B1b, Rht-D1b, Rht-B1c, and Rht-D1c, and also on Rht8. Levels of the bioactive GA4 and the auxin indole-3-acetic acid increased after inoculation with C. purpurea, following similar patterns and implicating a potential auxin-mediated induction of GA biosynthesis. In contrast, jasmonic acid (JA) levels fell in the parental lines 'Mercia' and 'Maris Huntsman' after inoculation with C. purpurea, but increased in all the Rht-mutant NILs. Inoculation with C. purpurea did not show any informative changes in the levels of salicylic acid. Our results suggest that GA-mediated degradation of the DELLA proteins and down-regulation of JA-signaling pathways supports infection of wheat by C. purpurea. As these responses are generally associated with necrotrophic fungal pathogens, we propose that the biotroph C. purpurea may have a necrotrophic growth stage.


Subject(s)
Triticum , Claviceps/genetics , Hormones/metabolism , Indoleacetic Acids/metabolism , Plant Diseases/microbiology , Triticum/genetics , Triticum/metabolism
7.
Plant Dis ; 106(2): 701-710, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34633239

ABSTRACT

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of P. striiformis f. sp. tritici races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty P. striiformis f. sp. tritici isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped with stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, and Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the P. striiformis f. sp. tritici samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing P. striiformis f. sp. tritici virulence was found in the Kenyan P. striiformis f. sp. tritici population, and different P. striiformis f. sp. tritici race groups were found to dominate different wheat growing regions. Moreover, recent P. striiformis f. sp. tritici races in East Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in elucidating P. striiformis f. sp. tritici evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust.


Subject(s)
Plant Diseases , Triticum , Kenya , Plant Breeding , Plant Diseases/microbiology , Puccinia , Triticum/microbiology , Virulence/genetics
8.
BMC Plant Biol ; 21(1): 316, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215204

ABSTRACT

BACKGROUND: Ergot, caused by the fungal pathogen Claviceps purpurea, infects the female flowers of a range of cereal crops, including wheat. To understand the interaction between C. purpurea and hexaploid wheat we undertook an extensive examination of the reprogramming of the wheat transcriptome in response to C. purpurea infection through floral tissues (i.e. the stigma, transmitting and base ovule tissues of the ovary) and over time. RESULTS: C. purpurea hyphae were observed to have grown into and down the stigma at 24 h (H) after inoculation. By 48H hyphae had grown through the transmitting tissue into the base, while by 72H hyphae had surrounded the ovule. By 5 days (D) the ovule had been replaced by fungal tissue. Differential gene expression was first observed at 1H in the stigma tissue. Many of the wheat genes differentially transcribed in response to C. purpurea infection were associated with plant hormones and included the ethylene (ET), auxin, cytokinin, gibberellic acid (GA), salicylic acid and jasmonic acid (JA) biosynthetic and signaling pathways. Hormone-associated genes were first detected in the stigma and base tissues at 24H, but not in the transmitting tissue. Genes associated with GA and JA pathways were seen in the stigma at 24H, while JA and ET-associated genes were identified in the base at 24H. In addition, several defence-related genes were differential expressed in response to C. purpurea infection, including antifungal proteins, endocytosis/exocytosis-related proteins, NBS-LRR class proteins, genes involved in programmed cell death, receptor protein kinases and transcription factors. Of particular interest was the identification of differential expression of wheat genes in the base tissue well before the appearance of fungal hyphae, suggesting that a mobile signal, either pathogen or plant-derived, is delivered to the base prior to colonisation. CONCLUSIONS: Multiple host hormone biosynthesis and signalling pathways were significantly perturbed from an early stage in the wheat - C. purpurea interaction. Differential gene expression at the base of the ovary, ahead of arrival of the pathogen, indicated the potential presence of a long-distance signal modifying host gene expression.


Subject(s)
Claviceps/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Transcriptome/genetics , Triticum/genetics , Triticum/microbiology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Plant Growth Regulators/pharmacology , RNA-Seq , Time Factors , Triticum/drug effects
9.
Plant J ; 106(2): 507-525, 2021 04.
Article in English | MEDLINE | ID: mdl-33529453

ABSTRACT

Brown rice (Oryza sativa) possesses various nutritionally dense bioactive phytochemicals exhibiting a wide range of antioxidant, anti-cancer, and anti-diabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity has not been systematically explored. Non-targeted metabolite profiling of developing and mature seeds of a diverse genetic panel of 320 rice cultivars allowed quantification of 117 metabolites. The metabolite genome-wide association study (mGWAS) detected genetic variants influencing diverse metabolic targets in developing and mature seeds. We further interlinked genetic variants on chromosome 7 (6.06-6.43 Mb region) with complex epistatic genetic interactions impacting multi-dimensional nutritional targets, including complex carbohydrate starch quality, the glycemic index, antioxidant catechin, and rice grain color. Through this nutrigenomics approach rare gene bank accessions possessing genetic variants in bHLH and IPT5 genes were identified through haplotype enrichment. These variants were associated with a low glycemic index, higher catechin levels, elevated total flavonoid contents, and heightened antioxidant activity in the whole grain with elevated anti-cancer properties being confirmed in cancer cell lines. This multi-disciplinary nutrigenomics approach thus allowed us to discover the genetic basis of human health-conferring diversity in the metabolome of brown rice.


Subject(s)
Nutritive Value/genetics , Oryza/genetics , Antioxidants/metabolism , Carbohydrate Metabolism/genetics , Flavonoids/metabolism , Genes, Plant/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Glycemic Index/genetics , Metabolome/genetics , Oryza/metabolism , Secondary Metabolism/genetics
10.
Front Nutr ; 7: 51, 2020.
Article in English | MEDLINE | ID: mdl-32391373

ABSTRACT

Ingestion of gluten proteins (gliadins and glutenins) from wheat, barley and rye can cause coeliac disease (CD) in genetically predisposed individuals. The only remedy is a strict and lifelong gluten-free diet. There is a growing desire for coeliac-safe, whole-grain wheat-based products, as consumption of whole-grain foods reduces the risk of chronic diseases. However, due to the large number of gluten genes and the complexity of the wheat genome, wheat that is coeliac-safe but retains baking quality cannot be produced by conventional breeding alone. CD is triggered by immunogenic epitopes, notably those present in α-, γ-, and ω-gliadins. RNA interference (RNAi) silencing has been used to down-regulate gliadin families. Recently, targeted gene editing using CRISPR/Cas9 has been applied to gliadins. These methods produce offspring with silenced, deleted, and/or edited gliadins, that overall may reduce the exposure of patients to CD epitopes. Here we review methods to efficiently screen and select the lines from gliadin gene editing programs for CD epitopes at the DNA and protein level, for baking quality, and ultimately in clinical trials. The application of gene editing for the production of coeliac-safe wheat is further considered within the context of food production and in view of current national and international regulatory frameworks.

11.
Front Genet ; 11: 229, 2020.
Article in English | MEDLINE | ID: mdl-32231689

ABSTRACT

Improving the nutritional quality of rice grains through modulation of bioactive compounds and micronutrients represents an efficient means of addressing nutritional security in societies which depend heavily on rice as a staple food. White rice makes a major contribution to the calorific intake of Asian and African populations, but its nutritional quality is poor compared to that of pigmented (black, purple, red orange, or brown) variants. The compounds responsible for these color variations are the flavonoids anthocyanin and proanthocyanidin, which are known to have nutritional value. The rapid progress made in the technologies underlying genome sequencing, the analysis of gene expression and the acquisition of global 'omics data, genetics of grain pigmentation has created novel opportunities for applying molecular breeding to improve the nutritional value and productivity of pigmented rice. This review provides an update on the nutritional value and health benefits of pigmented rice grain, taking advantage of both indigenous and modern knowledge, while also describing the current approaches taken to deciphering the genetic basis of pigmentation.

12.
Theor Appl Genet ; 133(6): 1873-1886, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32060572

ABSTRACT

KEY MESSAGE: Four QTL for ergot resistance (causal pathogen Claviceps purpurea) have been identified in the durum wheat cultivar Greenshank. Claviceps purpurea is a pathogen of grasses that infects flowers, replacing the seed with an ergot sclerotium. Ergot presents a significant problem to rye, barley and wheat, in particular hybrid seed production systems. In addition, there is evidence that the highly toxic alkaloids that accumulate within sclerotia can cross-contaminate otherwise healthy grain. Host resistance to C. purpurea is rare, few resistance loci having been identified. In this study, four ergot resistance loci are located on chromosomes 1B, 2A, 5A and 5B in the durum wheat cv. Greenshank. Ergot resistance was assessed through analysis of phenotypes associated with C. purpurea infection, namely the number of inoculated flowers that produced sclerotia, or resulted in ovary death but no sclerotia, the levels of honeydew produced, total sclerotia weight and average sclerotia weight and size per spike. Ergot testing was undertaken in Canada and the UK. A major effect QTL, QCp.aafc.DH-2A, was detected in both the Canadian and UK experiments and had a significant effect on honeydew production levels. QCp.aafc.DH-5B had the biggest influence on total sclerotia weight per spike. QCp.aafc.DH-1B was only detected in the Canadian experiments and QCp.aafc.DH-5A in the UK experiment. An RNASeq analysis, undertaken to identify wheat differentially expressed genes associated with different combinations of the four ergot resistance QTL, revealed a disproportionate number of DEGs locating to the QCp.aafc.DH-1B, QCp.aafc.DH-2A and QCp.aafc.DH-5B QTL intervals.


Subject(s)
Claviceps/pathogenicity , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Triticum/genetics , Genes, Plant , Hordeum/genetics , Hordeum/microbiology , Phenotype , Poaceae/genetics , Poaceae/microbiology , Transcription, Genetic , Triticum/microbiology
13.
J Genet ; 982019 Nov.
Article in English | MEDLINE | ID: mdl-31767816

ABSTRACT

Seedling and adult plant (field) resistance to yellow rust in the durum wheat (Triticum turgidum ssp. durum) cross Kunduru-1149 x Cham-1 was characterized using a functionally-targeted DNA marker system, NBS-profiling. Chi-squared analysis indicated a four gene model conferring seedling yellow rust resistance against Puccinia striiformis f. sp. tritici isolate WYR85/22 (virulent on Yr2, Yr6, Yr7 and Yr9). Interval mapping located two QTL for yellow rust resistance on the long arm of chromosome 1B, while Kruskal-Wallis single marker regression identified a number of additional marker loci associated with seedling and/or adult plant, field resistance to yellow rust. These results suggested that much of the yellow rust resistance seen in the field may be due to seedling expressed resistance (R) genes. Characterization of the DNA sequence of three NBS marker loci indicated that all showed significant homology to functionally-characterized R-genes and resistance gene analogues (RGAs), with the greatest homology being NBS-LRR-type R-genes and RGAs from cereal species.


Subject(s)
Disease Resistance/genetics , Triticum/genetics , Triticum/immunology , Basidiomycota/pathogenicity , Chromosome Mapping , Genes, Plant/genetics , Genetic Markers , Genome, Plant , Immunity, Innate/genetics , Immunity, Innate/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Quantitative Trait Loci , Seedlings/genetics , Sequence Analysis , Transcriptome , Triticum/microbiology
14.
BMC Plant Biol ; 19(1): 333, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370789

ABSTRACT

BACKGROUND: Wheat grains contain gluten proteins, which harbour immunogenic epitopes that trigger Coeliac disease in 1-2% of the human population. Wheat varieties or accessions containing only safe gluten have not been identified and conventional breeding alone struggles to achieve such a goal, as the epitopes occur in gluten proteins encoded by five multigene families, these genes are partly located in tandem arrays, and bread wheat is allohexaploid. Gluten immunogenicity can be reduced by modification or deletion of epitopes. Mutagenesis technologies, including CRISPR/Cas9, provide a route to obtain bread wheat containing gluten proteins with fewer immunogenic epitopes. RESULTS: In this study, we analysed the genetic diversity of over 600 α- and γ-gliadin gene sequences to design six sgRNA sequences on relatively conserved domains that we identified near coeliac disease epitopes. They were combined in four CRISPR/Cas9 constructs to target the α- or γ-gliadins, or both simultaneously, in the hexaploid bread wheat cultivar Fielder. We compared the results with those obtained with random mutagenesis in cultivar Paragon by γ-irradiation. For this, Acid-PAGE was used to identify T1 grains with altered gliadin protein profiles compared to the wild-type endosperm. We first optimised the interpretation of Acid-PAGE gels using Chinese Spring deletion lines. We then analysed the changes generated in 360 Paragon γ-irradiated lines and in 117 Fielder CRISPR/Cas9 lines. Similar gliadin profile alterations, with missing protein bands, could be observed in grains produced by both methods. CONCLUSIONS: The results demonstrate the feasibility and efficacy of using CRISPR/Cas9 to simultaneously edit multiple genes in the large α- and γ-gliadin gene families in polyploid bread wheat. Additional methods, generating genomics and proteomics data, will be necessary to determine the exact nature of the mutations generated with both methods.


Subject(s)
Gene Editing/methods , Genes, Plant/genetics , Gliadin/genetics , Glutens/genetics , Triticum/genetics , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Electrophoresis, Polyacrylamide Gel , Glutens/immunology , Plant Breeding/methods , Plants, Genetically Modified , Sequence Alignment
15.
Phytopathology ; 109(10): 1760-1768, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31282829

ABSTRACT

Leaf and stripe rust are major threats to wheat production worldwide. The effective, multiple rust resistances present in the Brazilian cultivar Toropi makes it an excellent choice for a genetic study of rust resistance. Testing of DNA from different seed lots of Toropi with 2,194 polymorphic 90K iSelect single nucleotide polymorphism markers identified significant genetic divergence, with as much as 35% dissimilarity between seed lots. As a result, further work was conducted with a single plant line derived from Toropi variant Toropi-6.4. A double haploid population with 168 lines derived from the cross Toropi-6.4 × Thatcher was phenotyped over multiple years and locations in Canada, New Zealand, and Kenya, with a total of seven field trials undertaken for leaf rust and nine for stripe rust. Genotyping with the 90K iSelect array, simple sequence repeat and Kompetitive allele-specific polymerase chain reaction markers resulted in a genetic map of 3,043 cM, containing 1,208 nonredundant markers. Significant quantitative trait loci (QTL) derived from Toropi-6.4 were identified in multiple environments on chromosomes 1B (QLr.crc-1BL/QYr.crc-1BL), 3B (QLr.crc-3BS), 4B (QYr.crc-4BL), 5A (QLr.crc-5AL and QYr.crc-5AL), and 5D (QLr.crc-5DS). The QTL QLr.crc-1BL/QYr.crc-1BL colocated with the multi-rust resistance locus Lr46/Yr29, while the QTL QLr.crc-5DS located to the Lr78 locus previously found in a wheat backcross population derived from Toropi. Comparisons of QTL combinations showed QLr.crc-1BL to contribute a significantly enhanced leaf rust resistance when combined with QLr.crc-5AL or QLr.crc-5DS, more so than when QLr.crc-5AL and QLr.crc-5DS were combined. A strong additive effect was also seen when the stripe rust resistance QTL QYr.crc-1BL and QYr.crc-5AL were combined.


Subject(s)
Basidiomycota , Disease Resistance , Triticum , Brazil , Canada , Chromosome Mapping , Disease Resistance/genetics , Genotype , Kenya , New Zealand , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Triticum/genetics , Triticum/microbiology
16.
Rice (N Y) ; 12(1): 27, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31041567

ABSTRACT

BACKGROUND: The wild ancestors of domesticated rice had red seed, white rice being the result of a mutation in the rice domestication gene Rc. Many pigmented rice landraces are still grown by ethnic communities for their nutritional and cultural value. This study assesses the genetic diversity in a collection of pigmented rice accessions from the Philippines. RESULTS: We undertook an analysis of the genetic and colour variation in a collection of 696 pigmented rice accessions held at PhilRice in the Philippines. The collection was reduced to 589 genotypes after removal of accessions with limited passport data or with low SNP marker call rates. Removal of duplicate genotypes resulted in a final, core collection of 307 accessions, representing all administrative districts of the Philippines, and composed predominately of japonica and indica sub-species. No genetic structure was observed in the core collection based on geographic origin. A pairwise comparison of accessions by region indicating that both local and long-distance exchange of rice accessions had occurred. The majority of the genetic variation was within regions (82.38%), rather than between regions (10.23%), with the remaining variation being within rice accession variance (7.39%). The most genetically diverse rice accessions originated from the Cordillera Administrative Region (CAR) in the far north of the Philippines, and in the regions of Davao and Caraga in the southeast. A comparison with pigmented rice accessions from the neighbouring countries Taiwan, Laos, China and India revealed a close relationship between accessions from Taiwan, supporting the hypothesis of southward diffusion of Austronesians from Taiwan to the Philippine. The 14-bp deletion within the gene Rc, known to result in loss of red pigmentation, was found in 30 accessions that still had coloured pericarps. Multi-spectral phenotyping was used to measure seed geometric and colour-appearance traits in 197 accessions from the core collection. The purple and variable purple rice accessions had the lowest values for the seed colour parameters - lightness (L*), intensity, saturation, a* (green - red; redness) and b* (blue - yellow; yellowness). CONCLUSION: These pigmented rice accessions represent a diverse genetic resource of value for further study and nutritional improvement of commercial rice varieties.

17.
Front Plant Sci ; 9: 1523, 2018.
Article in English | MEDLINE | ID: mdl-30405661

ABSTRACT

Coeliac Disease (CD) is an auto-immune reaction to gluten in 1-2% of the human population. A gluten-free (GF) diet, excluding wheat, barley, and rye, is the only remedy. This diet is difficult to adhere to, partly because wheat gluten is added to many processed products for their viscoelastic properties. In addition, GF products are less healthy and expensive. Wheat products containing only hypoimmunogenic gluten proteins would be a desirable option. Various gluten peptides that trigger CD have been characterized. A single wheat variety contains around hundred gluten genes, producing proteins with varying numbers of epitopes. Gene editing using CRISPR/Cas9 can precisely remove or modify the DNA sequences coding for immunogenic peptides. Wheat with hypoimmunogenic gluten thus exemplifies the potential of gene editing for improving crops for human consumption where conventional breeding cannot succeed. We describe here, in relation to breeding hypoimmunogenic wheat varieties, the inconsistencies of applying GM regulation in Europe for gene-edited plants while mutation breeding-derived plants are exempted. We explain that healthy products derived from this new technology may become available in the United States, Canada, Argentina and other countries but not in Europe, because of strict regulation of unintended GM risk at the expense of reduction the existing immunogenicity risks of patients. We argue that regulation of gene-edited plants should be based on scientific evidence. Therefore, we strongly recommend implementing the innovation principle. Responsible Research and Innovation, involving stakeholders including CD patient societies in the development of gene-editing products, will enable progress toward healthy products and encourage public acceptance.

18.
Phytopathology ; 108(12): 1344-1354, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30211634

ABSTRACT

Leaf rust, caused by the fungal pathogen Puccinia triticina, is a major threat to wheat production in many wheat-growing regions of the world. The introduction of leaf rust resistance genes into elite wheat germplasm is the preferred method of disease control, being environmentally friendly and crucial to sustained wheat production. Consequently, there is considerable value in identifying and characterizing new sources of leaf rust resistance. While many major, qualitative leaf rust resistance genes have been identified in wheat, a growing number of valuable sources of quantitative resistance have been reported. Here we review the progress made in the genetic identification of quantitative trait loci (QTL) for leaf rust resistance detected primarily in field analyses, i.e., adult plant resistance. Over the past 50 years, leaf rust resistance loci have been assigned to genomic locations through chromosome analyses and genetic mapping in biparental mapping populations, studies that represent 79 different wheat leaf rust resistance donor lines. In addition, seven association mapping studies have identified adult plant and seedling leaf rust resistance marker trait associations in over 4,000 wheat genotypes. Adult plant leaf rust resistance QTL have been found on all 21 chromosomes of hexaploid wheat, with the B genome carrying the greatest number of QTL. The group 2 chromosomes are also particularly rich in leaf rust resistance QTL. The A genome has the lowest number of QTL for leaf rust resistance. Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Subject(s)
Basidiomycota/physiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Triticum/genetics , Chromosome Mapping , Genotype , Phenotype , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/microbiology , Polyploidy , Seedlings/immunology , Seedlings/microbiology , Triticum/immunology , Triticum/microbiology
19.
Nat Plants ; 4(9): 662-668, 2018 09.
Article in English | MEDLINE | ID: mdl-30150615

ABSTRACT

Crop diseases reduce wheat yields by ~25% globally and thus pose a major threat to global food security1. Genetic resistance can reduce crop losses in the field and can be selected through the use of molecular markers. However, genetic resistance often breaks down following changes in pathogen virulence, as experienced with the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (Pst)2. This highlights the need to (1) identify genes that, alone or in combination, provide broad-spectrum resistance, and (2) increase our understanding of the underlying molecular modes of action. Here we report the isolation and characterization of three major yellow rust resistance genes (Yr7, Yr5 and YrSP) from hexaploid wheat (Triticum aestivum), each having a distinct recognition specificity. We show that Yr5, which remains effective to a broad range of Pst isolates worldwide, is closely related yet distinct from Yr7, whereas YrSP is a truncated version of Yr5 with 99.8% sequence identity. All three Yr genes belong to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N-terminal zinc-finger BED domain3 that is distinct from those found in non-NLR wheat proteins. We developed diagnostic markers to accelerate haplotype analysis and for marker-assisted selection to expedite the stacking of the non-allelic Yr genes. Our results provide evidence that the BED-NLR gene architecture can provide effective field-based resistance to important fungal diseases such as wheat yellow rust.


Subject(s)
Basidiomycota , Disease Resistance/physiology , NLR Proteins/physiology , Plant Diseases/microbiology , Plant Immunity/genetics , Triticum/microbiology , Zinc Fingers/physiology , Disease Resistance/genetics , Genes, Plant/genetics , Genes, Plant/physiology , NLR Proteins/genetics , Plant Immunity/physiology , Triticum/genetics , Triticum/immunology , Zinc Fingers/genetics
20.
Food Res Int ; 110: 11-21, 2018 08.
Article in English | MEDLINE | ID: mdl-30029701

ABSTRACT

A strict gluten-free diet is currently the only treatment for the 1-2% of the world population who suffer from coeliac disease (CD). However, due to the presence of wheat and wheat derivatives in many food products, avoiding gluten consumption is difficult. Gluten-free products, made without wheat, barley or rye, typically require the inclusion of numerous additives, resulting in products that are often less healthy than gluten-based equivalents. Here, we present and discuss two broad approaches to decrease wheat gluten immunogenicity for CD patients. The first approach is based on food processing strategies, which aim to remove gliadins or all gluten from edible products. We find that several of the candidate food processing techniques to produce low gluten-immunogenic products from wheat already exist. The second approach focuses on wheat breeding strategies to remove immunogenic epitopes from the gluten proteins, while maintaining their food-processing properties. A combination of breeding strategies, including mutation breeding and possibly genome editing, will be necessary to produce coeliac-safe wheat. Individuals suffering from CD and people genetically susceptible who may develop CD after prolonged gluten consumption would benefit from reduced CD-immunogenic wheat. Although the production of healthy and less CD-toxic wheat varieties and food products will be challenging, increasing global demand may require these issues to be addressed in the near future by food processing and cereal breeding companies.


Subject(s)
Celiac Disease/diet therapy , Food Handling/methods , Glutens/genetics , Plant Breeding/methods , Triticum/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL