Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Commun ; 14(1): 7714, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001070

ABSTRACT

Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq-/- cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were significantly more dependent on Polθ for viability; here, treatment with Polθi elevated RPA foci, which persisted through mitosis. In an isogenic system, BRCA1 null cells were defective, but PALB2 and BRCA2 mutant cells exhibited active resection, and consequently stronger sensitivity to Polθi. Thus, DNA end resection is a critical determinant of Polθi sensitivity in HR-deficient cells, and should be considered when selecting patients for clinical studies.


Subject(s)
BRCA1 Protein , Genes, BRCA2 , Mice , Animals , Humans , BRCA1 Protein/genetics , Mutation , Synthetic Lethal Mutations , DNA
2.
Cells ; 11(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35954206

ABSTRACT

Ataxia telangiectasia and Rad-3 related kinase (ATR) signals DNA lesions and replication stress (RS) to the S and G2/M checkpoints and DNA repair pathways making it a promising target to exploit the dysregulated DNA damage response in cancer. ATR inhibitors (ATRi) are under clinical investigation as monotherapy and in combination with other anticancer agents. Molecular determinants of sensitivity to ATRi are common in ovarian cancer, suggesting the therapeutic potential of ATRi. We investigated the cytotoxicity of the ATRi, VE-821, in a panel of human ovarian cancer cell lines. High grade serous (HGS) cell lines were significantly more sensitive to VE-821 than non-HGS (p ≤ 0.0001) but previously identified determinants of sensitivity (TP53, ATM and BRCA1) were not predictive. Only low RAD51 (p = 0.041), TopBP1 (p = 0.026) and APOBEC3B (p = 0.015) protein expression were associated with increased VE-821 sensitivity. HGS cells had increased levels of RS (pRPASer4/8 and γH2AX nuclear immunofluorescence), and elevated RS predicted sensitivity to VE-821 independently of the cell line subtype. These data suggest that functional assessment of RS biomarkers may be a better predictive biomarker of ATRi response than any single aberrant gene in ovarian cancer and potentially other cancers.


Subject(s)
Ovarian Neoplasms , Protein Kinase Inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Biomarkers , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cytidine Deaminase/metabolism , Female , Humans , Minor Histocompatibility Antigens , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology
3.
Cancers (Basel) ; 13(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804647

ABSTRACT

Defective DNA damage response (DDR) pathways are enabling characteristics of cancers that not only can be exploited to specifically target cancer cells but also can predict chemotherapy response. Defective Homologous Recombination Repair (HRR) function, e.g., due to BRCA1/2 loss, is a determinant of response to platinum agents and PARP inhibitors in ovarian cancers. Most chemotherapies function by either inducing DNA damage or impacting on its repair but are generally used in the clinic unselectively. The significance of HRR and other DDR pathways in determining response to several other chemotherapy drugs is not well understood. In this study, the genomic, transcriptomic and functional analysis of DDR pathways in a panel of 14 ovarian cancer cell lines identified that defects in DDR pathways could determine response to several chemotherapy drugs. Carboplatin, rucaparib, and topotecan sensitivity were associated with functional loss of HRR (validated in 10 patient-derived primary cultures) and mismatch repair. Two DDR gene expression clusters correlating with treatment response were identified, with PARP10 identified as a novel marker of platinum response, which was confirmed in The Cancer Genome Atlas (TCGA) ovarian cancer cohort. Reduced non-homologous end-joining function correlated with increased sensitivity to doxorubicin, while cells with high intrinsic oxidative stress showed sensitivity to gemcitabine. In this era of personalised medicine, molecular/functional characterisation of DDR pathways could guide chemotherapy choices in the clinic allowing specific targeting of ovarian cancers.

5.
Cancers (Basel) ; 12(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709004

ABSTRACT

In order to be effective models to identify biomarkers of chemotherapy response, cancer cell lines require thorough characterization. In this study, we characterised the widely used high grade serous ovarian cancer (HGSOC) cell line NIH-OVCAR3 using bioinformatics, cytotoxicity assays and molecular/functional analyses of DNA damage response (DDR) pathways in comparison to an ovarian cancer cell line panel. Bioinformatic analysis confirmed the HGSOC-like features of NIH-OVCAR3, including low mutation frequency, TP53 loss and high copy number alteration frequency similar to 201 HGSOCs analysed (TCGA). Cytotoxicity assays were performed for the standard of care chemotherapy, carboplatin, and DDR targeting drugs: rucaparib (a PARP inhibitor) and VE-821 (an ATR inhibitor). Interestingly, NIH-OVCAR3 cells showed sensitivity to carboplatin and rucaparib which was explained by functional loss of homologous recombination repair (HRR) identified by plasmid re-joining assay, despite the ability to form RAD51 foci and absence of mutations in HRR genes. NIH-OVCAR3 cells also showed high non-homologous end joining activity, which may contribute to HRR loss and along with genomic amplification in ATR and TOPBP1, could explain the resistance to VE-821. In summary, NIH-OVCAR3 cells highlight the complexity of HGSOCs and that genomic or functional characterization alone might not be enough to predict/explain chemotherapy response.

6.
Pharmacol Ther ; 207: 107450, 2020 03.
Article in English | MEDLINE | ID: mdl-31836456

ABSTRACT

The DNA damage response (DDR) machinery is responsible for detecting DNA damage, pausing the cell cycle and initiating DNA repair. Ataxia telangiectasia and Rad3-related (ATR) protein is a key kinase at the heart of the DDR, responsible for sensing replication stress (RS) and signalling it to S and G2/M checkpoints to facilitate repair. In cancer, loss of G1 checkpoint control and activation of oncogenes that drive replication, result in cancer cells more likely to enter S phase with increased RS. These cancer cells become more reliant on their S and G2/M checkpoints, making this an attractive anti-cancer target. Targeting ATR is the focus of many oncology drug pipelines with a number of potent, selective ATR inhibitors developed, four (M6620, M4344, AZD6738 and BAY1895344) are currently in clinical development. Here we summarise the pre-clinical data supporting the use of ATR inhibitors as monotherapy and in combination with chemotherapy, radiotherapy and novel targeted agents such as PARP inhibitors. We discuss the current clinical trial data and the challenges of taking ATR inhibitors into the clinic and of identifying biomarkers to aid patient selection.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Neoplasms/therapy , Animals , DNA Damage , Humans , Neoplasms/genetics , Synthetic Lethal Mutations
7.
Cancer Med ; 7(9): 4744-4754, 2018 09.
Article in English | MEDLINE | ID: mdl-30109783

ABSTRACT

NUCOLL43 is a novel ovarian clear cell carcinoma (O-CCC) cell line that arose from a primary culture of a patient's malignant ascites. The cells grow reliably in cell culture with a doubling time of approx. 45 hours and form colonies at high efficiency. They have a very high degree of loss of heterozygosity (LOH) affecting approximately 85% of the genome, mostly copy neutral and almost identical to the original tumor. The cells express epithelial (pan-cytokeratin) and mesenchymal (vimentin) characteristics, CA125 and p16, like the original tumor. They also express ARID1A but not HNF-1ß and, like the original tumor, and are negative for p53 expression, with no evidence of p53 function. NUCOLL43 cells express all other DNA damage response proteins investigated and have functional homologous recombination DNA repair. They are insensitive to cisplatin, the PARP inhibitor rucaparib, and MDM2 inhibitors but are sensitive to camptothecin, paclitaxel, and NVP-BEZ235. The NUCOLL43 cell line represents a distinct subtype of O-CCC that is p53 and HNF-1ß null but expresses ARID1A. Its high degree of similarity with the original tumor genomically and proteomically, as well as the high level of LOH, make this an interesting cell line for O-CCC research. It has been deposited with Ximbio.


Subject(s)
Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/pathology , Drug Resistance, Neoplasm/genetics , Genome-Wide Association Study , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Pharmacogenomic Variants , Adenocarcinoma, Clear Cell/diagnostic imaging , Adenocarcinoma, Clear Cell/drug therapy , Biopsy , Cell Line, Tumor , Female , Genomics , Humans , Microsatellite Repeats , Middle Aged , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Phenotype , Recombinational DNA Repair , Tomography, X-Ray Computed
8.
Haematologica ; 103(6): 1038-1046, 2018 06.
Article in English | MEDLINE | ID: mdl-29567785

ABSTRACT

Alteration in the DNA replication, repair or recombination processes is a highly relevant mechanism of genomic instability. Despite genomic aberrations manifested in hematologic malignancies, such a defect as a source of biomarkers has been underexplored. Here, we investigated the prognostic value of expression of 82 genes involved in DNA replication-repair-recombination in a series of 99 patients with chronic lymphocytic leukemia without detectable 17p deletion or TP53 mutation. We found that expression of the POLN gene, encoding the specialized DNA polymerase ν (Pol ν) correlates with time to relapse after first-line therapy with fludarabine. Moreover, we found that POLN was the only gene up-regulated in primary patients' lymphocytes when exposed in vitro to proliferative and pro-survival stimuli. By using two cell lines that were sequentially established from the same patient during the course of the disease and Pol ν knockout mouse embryonic fibroblasts, we reveal that high relative POLN expression is important for DNA synthesis and cell survival upon fludarabine treatment. These findings suggest that Pol ν could influence therapeutic resistance in chronic lymphocytic leukemia. (Patients' samples were obtained from the CLL 2007 FMP clinical trial registered at: clinicaltrials.gov identifer: 00564512).


Subject(s)
DNA-Directed DNA Polymerase/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Tumor Suppressor Protein p53/genetics , Vidarabine/analogs & derivatives , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , DNA-Directed DNA Polymerase/metabolism , Disease Progression , Gene Expression Profiling , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mice , Mutation , Prognosis , Proportional Hazards Models , Vidarabine/pharmacology , Vidarabine/therapeutic use
9.
Cancers (Basel) ; 9(5)2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28448462

ABSTRACT

Targeting the DNA damage response (DDR) is a new therapeutic approach in cancer that shows great promise for tumour selectivity. Key components of the DDR are the ataxia telangiectasia mutated and Rad3 related (ATR) and checkpoint kinase 1 (CHK1) kinases. This review article describes the role of ATR and its major downstream target, CHK1, in the DDR and why cancer cells are particularly reliant on the ATR-CHK1 pathway, providing the rationale for targeting these kinases, and validation of this hypothesis by genetic manipulation. The recent development of specific inhibitors and preclinical data using these inhibitors not only as chemosensitisers and radiosensitisers but also as single agents to exploit specific pathologies of tumour cells is described. These potent and specific inhibitors have now entered clinical trial and early results are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...