Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 23(2): 384-395, 2021 02.
Article in English | MEDLINE | ID: mdl-33173220

ABSTRACT

PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Autism Spectrum Disorder/genetics , Chromosomal Proteins, Non-Histone , DNA-Binding Proteins , Female , Genes, X-Linked , Genotype , Humans , Intellectual Disability/genetics , Male , Phenotype , Exome Sequencing
2.
Mol Genet Metab ; 115(2-3): 128-140, 2015.
Article in English | MEDLINE | ID: mdl-25943031

ABSTRACT

PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.


Subject(s)
Acyltransferases/metabolism , Glycosylphosphatidylinositols/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Child , Developmental Disabilities/metabolism , Fibroblasts , Frameshift Mutation , Heterozygote , Humans , Muscle Hypotonia/metabolism , Mutation, Missense , Skin/cytology
3.
Pediatr Cardiol ; 34(8): 1772-84, 2013.
Article in English | MEDLINE | ID: mdl-23652966

ABSTRACT

Early brain injury occurs in newborns with congenital heart disease (CHD) placing them at risk for impaired neurodevelopmental outcomes. Predictors for preoperative brain injury have not been well described in CHD newborns. This study aimed to analyze, retrospectively, brain magnetic resonance imaging (MRI) in a heterogeneous group of newborns who had CHD surgery during the first month of life using a detailed qualitative CHD MRI Injury Score, quantitative imaging assessments (regional apparent diffusion coefficient [ADC] values and brain volumes), and clinical characteristics. Seventy-three newborns who had CHD surgery at 8 ± 5 (mean ± SD) days of life and preoperative brain MRI were included; 38 also had postoperative MRI. Thirty-four (34 of 73, 47 %) had at least one type of preoperative brain injury, and 28 of 38 (74 %) had postoperative brain injury. The 5-min APGAR score was negatively associated with preoperative injury, but there was no difference between CHD types. Infants with intraparenchymal hemorrhage, deep gray matter injury, and/or watershed infarcts had the highest CHD MRI Injury Scores. ADC values and brain volumes were not different in infants with different CHD types or in those with and without brain injury. In a mixed group of CHD newborns, brain injury was found preoperatively on MRI in almost 50 %, and there were no significant baseline characteristic differences to predict this early brain injury except 5-min APGAR score. We conclude that all infants, regardless of CHD type, who require early surgery should be evaluated with MRI because they are all at high risk for brain injury.


Subject(s)
Brain Diseases/etiology , Brain/pathology , Heart Defects, Congenital/complications , Arkansas/epidemiology , Brain Diseases/diagnosis , Brain Diseases/epidemiology , Cardiac Surgical Procedures , Follow-Up Studies , Heart Defects, Congenital/surgery , Humans , Infant, Newborn , Magnetic Resonance Imaging , Prevalence , Prognosis , Retrospective Studies , Risk Factors , Severity of Illness Index , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...