Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 118: 24-34, 2021 10.
Article in English | MEDLINE | ID: mdl-34030948

ABSTRACT

The cerebral cortex is responsible for the higher-order functions of the brain such as planning, cognition, or social behaviour. It provides us with the capacity to interact with and transform our world. The substrates of cortical functions are complex neural circuits that arise during development from the dynamic remodelling and progressive specialization of immature undefined networks. Here, we review the genetic and activity-dependent mechanisms of cortical wiring focussing on the importance of their interaction. Cortical circuits emerge from an initial set of neuronal types that engage in sequential forms of embryonic and postnatal activity. Such activities further complement the cells' genetic programs, increasing neuronal diversity and modifying the electrical properties while promoting selective connectivity. After a temporal window of enhanced plasticity, the main features of mature circuits are established. Failures in these processes can lead to neurodevelopmental disorders whose treatment remains elusive. However, a deeper dissection of cortical wiring will pave the way for innovative therapies.


Subject(s)
Cerebral Cortex/growth & development , Animals , Humans , Mice
2.
Toxicol In Vitro ; 46: 273-283, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29032072

ABSTRACT

A response surface was built to predict the lipid peroxidation level, generated in an iron-ascorbate in vitro model, of any organ, which is correlated with the oxidative stress injury in biological membranes. Oxidative stress studies are numerous, usually performed on laboratory animals. However, ethical concerns require validated methods to reduce the use of laboratory animals. The response surface described here is a validated method to replace animals. Tissue samples of rabbit liver, kidney, heart, skeletal muscle and brain were oxidized with different concentrations of FeCl3 (0.1 to 8mM) and ascorbate (0.1mM), during different periods of time (0 to 90min) at 37°C. Experimental data obtained, with lipid content and antioxidant activity of each organ, allowed constructing a multidimensional surface capable of predicting, by interpolation, the lipid peroxidation level of any organ defined by its antioxidant activity and fat content, when exposed to different oxidant conditions. To check the predictive potential of the technique, two more experiments were carried out. First, in vitro oxidation data from lung tissue were collected. Second, the antioxidant capacity of kidney homogenates was modified by adding melatonin. Then, the response surface generated could predict lipid peroxidation levels produced in these new situations. The potential of this technique could be reinforced using collaborative databases to reduce the number of animals in experimental procedures.


Subject(s)
Antioxidants/metabolism , Oxidative Stress , Toxicity Tests/methods , Animals , Brain/drug effects , Chlorides/toxicity , Ferric Compounds/toxicity , Heart/drug effects , Kidney/drug effects , Lipid Peroxidation/drug effects , Liver/drug effects , Lung/drug effects , Male , Muscle, Skeletal/drug effects , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL