Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Sci Rep ; 13(1): 12454, 2023 08 01.
Article En | MEDLINE | ID: mdl-37528174

Tropical forest fragmentation from agricultural expansion alters the microclimatic conditions of the remaining forests, with effects on vegetation structure and function. However, little is known about how the functional trait variability within and among tree species in fragmented landscapes influence and facilitate species' persistence in these new environmental conditions. Here, we assessed potential changes in tree species' functional traits in riparian forests within six riparian forests in cropland catchments (Cropland) and four riparian forests in forested catchments (Forest) in southern Amazonia. We sampled 12 common functional traits of 123 species across all sites: 64 common to both croplands and forests, 33 restricted to croplands, and 26 restricted to forests. We found that forest-restricted species had leaves that were thinner, larger, and with higher phosphorus (P) content, compared to cropland-restricted ones. Tree species common to both environments showed higher intraspecific variability in functional traits, with leaf thickness and leaf P concentration varying the most. Species turnover contributed more to differences between forest and cropland environments only for the stem-specific density trait. We conclude that the intraspecific variability of functional traits (leaf thickness, leaf P, and specific leaf area) facilitates species persistence in riparian forests occurring within catchments cleared for agricultural expansion in Amazonia.


Forests , Trees , Agriculture , Phenotype , Plant Leaves
2.
Glob Chang Biol ; 28(22): 6807-6822, 2022 11.
Article En | MEDLINE | ID: mdl-36073184

The Brazilian Cerrado is one of the most biodiverse savannas in the world, yet 46% of its original cover has been cleared to make way for crops and pastures. These extensive land-use transitions (LUTs) are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperature (LST), and ultimately reducing precipitation. Here, we quantify the impacts of LUTs on ET and LST in the Cerrado by combining MODIS satellite data with annual land use and land cover maps from 2006 to 2019. We performed regression analyses to quantify the effects of six common LUTs on ET and LST across the entire gradient of Cerrado landscapes. Results indicate that clearing forests for cropland or pasture increased average LST by ~3.5°C and reduced mean annual ET by 44% and 39%, respectively. Transitions from woody savannas to cropland or pasture increased average LST by 1.9°C and reduced mean annual ET by 27% and 21%, respectively. Converting native grasslands to cropland or pasture increased average LST by 0.9 and 0.6°C, respectively. Conversely, grassland-to-pasture transitions increased mean annual ET by 15%. To date, land changes have caused a 10% reduction in water recycled to the atmosphere annually and a 0.9°C increase in average LST across the biome, compared to the historic baseline under native vegetation. Global climate changes from increased atmospheric greenhouse gas concentrations will only exacerbate these effects. Considering potential future scenarios, we found that abandoning deforestation control policies or allowing legal deforestation to continue (at least 28.4 Mha) would further reduce yearly ET (by -9% and -3%, respectively) and increase average LST (by +0.7 and +0.3°C, respectively) by 2050. In contrast, policies encouraging zero deforestation and restoration of the 5.2 Mha of illegally deforested areas would partially offset the warming and drying impacts of land-use change.


O Cerrado brasileiro é uma das savanas mais biodiversas do mundo. Apesar disso, 46% da sua cobertura original foi desmatada para dar lugar a cultivos agrícolas e pastos. Estas extensas transições de uso do solo (LUT) têm o potencial de influenciar o clima regional, reduzindo a evapotranspiração (ET), aumentando a temperatura da superfície terrestre (LST) e por fim reduzindo a precipitação. O objetivo deste estudo foi quantificar os impactos de LUTs sobre ET e LST no Cerrado, combinando dados do satélite MODIS com mapas anuais de uso e cobertura do solo de 2006-2019. Foram realizadas análises de regressão para quantificar os efeitos de seis LUTs usuais sobre ET e LST, ao longo de todo o gradiente de paisagens do Cerrado. Os resultados indicaram que a retirada de florestas para dar lugar à agricultura ou pastagem aumentou a LST média em ~3.5°C e reduziu a ET média anual em 44% e 39%, respectivamente. Transições de formações savânicas para agricultura ou pastagem aumentaram a LST média em 1.9°C e reduziram a ET média anual em 27% e 21%, respectivamente. A conversão de campos nativos para agricultura ou pastagem aumentou a LST média em 0.9 e 0.6°C, respectivamente. Em contrapartida, transições de formações campestres nativas para pastagens aumentaram a ET média anual em 15%. Até o momento, as mudanças de uso do solo causaram redução de 10% da água reciclada para a atmosfera anualmente e aumento de 0.9°C da LST média ao longo do bioma, em comparação com a linha de base histórica sob vegetação nativa. As mudanças climáticas globais decorrentes do aumento das concentrações atmosféricas de gases do efeito estufa irão exacerbar esses efeitos. Considerando potenciais cenários futuros, observou-se que o abandono das políticas de controle do desmatamento ou o avanço do desmatamento legal (ao menos 28.4 Mha) reduziriam a ET anual (em −9% e −3%, respectivamente) e aumentariam a LST média (em +0.7 e +0.3ºC, respectivamente) até 2050. Por outro lado, políticas que promovam desmatamento zero e restauração dos 5.2 Mha de áreas ilegalmente desmatadas compensariam parte dos impactos de aquecimento e seca causados por alterações de uso do solo.


Ecosystem , Greenhouse Gases , Agriculture , Conservation of Natural Resources , Forests , Water
3.
Sci Adv ; 8(30): eabd2713, 2022 Jul 29.
Article En | MEDLINE | ID: mdl-35905176

Exceptional fire activity in 2019 sparked concern about Amazon forest conservation. However, the inability to rapidly separate satellite fire detections by fire type hampered fire suppression and assessment of ecosystem and air quality impacts. Here, we describe the development of a near-real-time approach for tracking contributions from deforestation, forest, agricultural, and savanna fires to burned area and emissions and apply the approach to the 2019 fire season in South America. Across the southern Amazon, 19,700 deforestation fire events accounted for 39% of all satellite active fire detections and the majority of fire carbon emissions (63%; 69 Tg C). Multiday fires accounted for 81% of burned area and 92% of carbon emissions from the Amazon, with many forest fires burning uncontrolled for weeks. Most fire detections from deforestation fires were correctly identified within 2 days (67%), highlighting the potential to improve situational awareness and management outcomes during fire emergencies.

4.
Nat Commun ; 13(1): 1964, 2022 04 12.
Article En | MEDLINE | ID: mdl-35413947

Biophysical effects from deforestation have the potential to amplify carbon losses but are often neglected in carbon accounting systems. Here we use both Earth system model simulations and satellite-derived estimates of aboveground biomass to assess losses of vegetation carbon caused by the influence of tropical deforestation on regional climate across different continents. In the Amazon, warming and drying arising from deforestation result in an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in tropical Asia due to its high levels of annual mean precipitation. These findings indicate that tropical forests may be undervalued in carbon accounting systems that neglect climate feedbacks from surface biophysical changes and that the positive carbon-climate feedback from deforestation-driven climate change is higher than the feedback originating from fossil fuel emissions.


Carbon/metabolism , Climate Change , Forests , Tropical Climate , Biomass , Conservation of Natural Resources , Trees
5.
PNAS Nexus ; 1(3): pgac115, 2022 Jul.
Article En | MEDLINE | ID: mdl-36741468

Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.

6.
Nature ; 597(7877): 516-521, 2021 09.
Article En | MEDLINE | ID: mdl-34471291

Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.


Biodiversity , Conservation of Natural Resources/legislation & jurisprudence , Droughts , Forestry/legislation & jurisprudence , Rainforest , Wildfires/statistics & numerical data , Animals , Brazil , Climate Change/statistics & numerical data , Forests , Geographic Mapping , Plants , Trees/physiology , Vertebrates
7.
Ecol Evol ; 11(12): 7970-7979, 2021 Jun.
Article En | MEDLINE | ID: mdl-34188865

Understanding and predicting the effect of global change phenomena on biodiversity is challenging given that biodiversity data are highly multivariate, containing information from tens to hundreds of species in any given location and time. The Latent Dirichlet Allocation (LDA) model has been recently proposed to decompose biodiversity data into latent communities. While LDA is a very useful exploratory tool and overcomes several limitations of earlier methods, it has limited inferential and predictive skill given that covariates cannot be included in the model. We introduce a modified LDA model (called LDAcov) which allows the incorporation of covariates, enabling inference on the drivers of change of latent communities, spatial interpolation of results, and prediction based on future environmental change scenarios. We show with simulated data that our approach to fitting LDAcov is able to estimate well the number of groups and all model parameters. We illustrate LDAcov using data from two experimental studies on the long-term effects of fire on southeastern Amazonian forests in Brazil. Our results reveal that repeated fires can have a strong impact on plant assemblages, particularly if fuel is allowed to build up between consecutive fires. The effect of fire is exacerbated as distance to the edge of the forest decreases, with small-sized species and species with thin bark being impacted the most. These results highlight the compounding impacts of multiple fire events and fragmentation, a scenario commonly found across the southern edge of Amazon. We believe that LDAcov will be of wide interest to scientists studying the effect of global change phenomena on biodiversity using high-dimensional datasets. Thus, we developed the R package LDAcov to enable the straightforward use of this model.

8.
J Environ Manage ; 286: 112189, 2021 May 15.
Article En | MEDLINE | ID: mdl-33677342

Fire is one of the most powerful modifiers of the Amazonian landscape and knowledge about its drivers is needed for planning control and suppression. A plethora of factors may play a role in the annual dynamics of fire frequency, spanning the biophysical, climatic, socioeconomic and institutional dimensions. To uncover the main forces currently at play, we investigated the area burned in both forested and deforested areas in the outstanding case of Brazil's state of Acre, in southwestern Amazonia. We mapped burn scars in already-deforested areas and intact forest based on satellite images from the Landsat series analyzed between 2016 and 2019. The mapped burnings in already-deforested areas totalled 550,251 ha. In addition, we mapped three forest fires totaling 34,084 ha. Fire and deforestation were highly correlated, and the latter occurred mainly in federal government lands, with protected areas showing unprecedented forest fire levels in 2019. These results indicate that Acre state is under increased fire risk even during average rainfall years. The record fires of 2019 may continue if Brazil's ongoing softening of environmental regulations and enforcement is maintained. Acre and other Amazonian states must act quickly to avoid an upsurge of social and economic losses in the coming years.


Fires , Wildfires , Brazil , Conservation of Natural Resources , Forests , Trees
9.
New Phytol ; 230(1): 139-154, 2021 04.
Article En | MEDLINE | ID: mdl-33507548

Non-structural carbon (NSC) storage (i.e. starch, soluble sugras and lipids) in tree stems play important roles in metabolism and growth. Their spatial distribution in wood may explain species-specific differences in carbon storage dynamics, growth and survival. However, quantitative information on the spatial distribution of starch and lipids in wood is sparse due to methodological limitations. Here we assessed differences in wood NSC and lipid storage between tropical tree species with different growth and mortality rates and contrasting functional types. We measured starch and soluble sugars in wood cores up to 4 cm deep into the stem using standard chemical quantification methods and histological slices stained with Lugol's iodine. We also detected neutral lipids using histological slices stained with Oil-Red-O. The histological method allowed us to group individuals into two categories according to their starch storage strategy: fiber-storing trees and parenchyma-storing trees. The first group had a bigger starch pool, slower growth and lower mortality rates than the second group. Lipid storage was found in wood parenchyma in five species and was related to low mortality rates. The quantification of the spatial distribution of starch and lipids in wood improves our understanding of NSC dynamics in trees and reveals additional dimensions of tree growth and survival strategies.


Starch , Trees , Carbohydrates , Carbon , Wood
10.
J Geophys Res Biogeosci ; 125(8): e2020JG005677, 2020 Aug.
Article En | MEDLINE | ID: mdl-32999796

Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems.

11.
Ecol Lett ; 23(1): 99-106, 2020 Jan.
Article En | MEDLINE | ID: mdl-31642170

Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire-driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait-enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.


En los bosques tropicales de la Amazonia, los incendios de sotobosque representan una amenaza que se está acelerando. Durante la sequía, pueden afectar un área mayor que la deforestación misma. Estos incendios pueden matan árboles a tasas que varían desde <10 hasta cerca de 90% dependiendo de la intensidad del fuego, la historia de perturbaciones forestales y los rasgos funcionales de los árboles. En este estudio, examinamos la variación en el grosor de la corteza en la Amazonía. La corteza puede proteger los árboles de los incendios, pero normalmente se supone que es uniformemente delgada en los bosques tropicales. Aquí, mostramos que el grosor de la corteza varía bastante, con una corteza más gruesa en los bosques secos y más delgada en los bosques húmedos. También, mostramos que cortezas más delgadas resultan en tasas de mortalidad más altas en bosques más húmedos. En total, estimamos que los incendios en el sotobosque de la Amazonía han añadido entre 0,67 y 5,86 gigatoneladas de CO2 atmosférico entre 2001-2010. Los modelos globales de vegetación que predicen los efectos de los incendios sobre el reciclaje de carbono en los bosques tropicales deberían incluir explícitamente la variación en el grosor de la corteza.


Os incêndios rasteiros de sub-bosque representam uma ameaça cada vez maior às florestas tropicais da Amazônia. Durante secas, eles podem afetar áreas maiores do que àquelas desmatadas. Esses incêndios matam árvores a taxas que variam de <10 a c. 90%, dependendo da intensidade do fogo, da história de distúrbios florestais e das características funcionais das árvores. Neste estudo, examinamos a variação na espessura da casca na Amazônia. A casca pode proteger árvores do fogo, mas geralmente é considerada uniformemente fina para diversas florestas tropicais. Aqui, mostramos que a espessura da casca varia, com cascas mais espessas ocorrendo em florestas secas e mais finas ocorrendo em florestas mais úmidas. Mostramos também que a casca mais fina resulta em taxas de mortalidade mais altas em florestas úmidas. No total, estimamos que os incêndios de sub-bosque adicionaram entre 0,67 e 5,86 gigatoneladas de CO2 atmosférico entre 2001-2010. Os modelos globais de vegetação devem incluir explicitamente a variação na espessura da casca ao prever os efeitos do fogo no ciclo do carbono de florestas tropicais.


Forests , Trees , Carbon Cycle , Plant Bark , Sensitivity and Specificity
12.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Article En | MEDLINE | ID: mdl-31237398

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Carbon Dioxide , Fires , Brazil , Ecosystem , Forests , Trees
13.
Article En | MEDLINE | ID: mdl-30297467

Human-modified forests are an ever-increasing feature across the Amazon Basin, but little is known about how stem growth is influenced by extreme climatic events and the resulting wildfires. Here we assess for the first time the impacts of human-driven disturbance in combination with El Niño-mediated droughts and fires on tree growth and carbon accumulation. We found that after 2.5 years of continuous measurements, there was no difference in stem carbon accumulation between undisturbed and human-modified forests. Furthermore, the extreme drought caused by the El Niño did not affect carbon accumulation rates in surviving trees. In recently burned forests, trees grew significantly more than in unburned ones, regardless of their history of previous human disturbance. Wood density was the only significant factor that helped explain the difference in growth between trees in burned and unburned forests, with low wood-density trees growing significantly more in burned sites. Our results suggest stem carbon accumulation is resistant to human disturbance and one-off extreme drought events, and it is stimulated immediately after wildfires. However, these results should be seen with caution-without accounting for carbon losses, recruitment and longer-term changes in species composition, we cannot fully understand the impacts of drought and fire in the carbon balance of human-modified forests.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Carbon/metabolism , Droughts , Fires , Forests , Plant Stems/chemistry , Trees/growth & development , Brazil , El Nino-Southern Oscillation
14.
Article En | MEDLINE | ID: mdl-30297475

Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


El Nino-Southern Oscillation , Forests , Trees/growth & development , Tropical Climate , Africa , Borneo , Brazil , Droughts , Seasons
15.
Oecologia ; 187(4): 933-940, 2018 08.
Article En | MEDLINE | ID: mdl-29955996

Episodic multi-year droughts fundamentally alter the dynamics, functioning, and structure of Amazonian forests. However, the capacity of individual plant species to withstand intense drought regimes remains unclear. Here, we evaluated ecophysiological responses from a forest community where we sampled 83 woody plant species during 5 years of experimental drought (throughfall exclusion) in an eastern Amazonian terra firme forest. Overall, the experimental drought resulted in shifts of some, but not all, leaf traits related to photosynthetic carbon uptake and intrinsic water-use efficiency. Leaf δ13C values increased by 2-3‰ within the canopy, consistent with increased diffusional constraints on photosynthesis. Decreased leaf C:N ratios were also observed, consistent with lower investments in leaf structure. However, no statistically significant treatment effects on leaf nitrogen content were observed, consistent with a lack of acclimation in photosynthetic capacity or increased production of nitrogen-based secondary metabolites. The results of our study provide evidence of robust acclimation potential to drought intensification in the diverse flora of an Amazonian forest community. The results reveals considerable ability of several species to respond to intense drought and challenge commonly held perspectives that this flora has attained limited adaptive plasticity because of a long evolutionary history in a favorable and stable climate.


Droughts , Trees , Acclimatization , Forests , Photosynthesis , Plant Leaves
16.
J Geophys Res Biogeosci ; 123(1): 18-31, 2018 Jan.
Article En | MEDLINE | ID: mdl-29938142

Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agriculture is now expanding remains poorly constrained. To quantify the effect of intensive agriculture on tropical soil C, we compared C stocks, radiocarbon, and stable C isotopes to 2 m depth from forests and soybean cropland created from former pasture in Mato Grosso, Brazil. We hypothesized that soil disturbance, higher soil temperatures (+2°C), and lower OM inputs from soybeans would increase soil C turnover and deplete C stocks relative to nearby forest soils. However, we found reduced C concentrations and stocks only in surface soils (0-10 cm) of soybean cropland compared with forests, and these differences could be explained by soil mixing during plowing. The amount and Δ14C of respired CO2 to 50 cm depth were significantly lower from soybean soils, yet CO2 production at 2 m deep was low in both forest and soybean soils. Mean surface soil δ13C decreased by 0.5‰ between 2009 and 2013 in soybean cropland, suggesting low OM inputs from soybeans. Together these findings suggest the following: (1) soil C is relatively resistant to changes in land use and (2) conversion to cropland caused a small, measurable reduction in the fast-cycling C pool through reduced OM inputs, mobilization of older C from soil mixing, and/or destabilization of SOM in surface soils.

17.
Glob Chang Biol ; 24(8): 3629-3641, 2018 08.
Article En | MEDLINE | ID: mdl-29748988

Fire at the dry southern margin of the Amazon rainforest could have major consequences for regional soil carbon (C) storage and ecosystem carbon dioxide (CO2 ) emissions, but relatively little information exists about impacts of fire on soil C cycling within this sensitive ecotone. We measured CO2 effluxes from different soil components (ground surface litter, roots, mycorrhizae, soil organic matter) at a large-scale burn experiment designed to simulate a severe but realistic potential future scenario for the region (Fire plot) in Mato Grosso, Brazil, over 1 year, and compared these measurements to replicated data from a nearby, unmodified Control plot. After four burns over 5 years, soil CO2 efflux (Rs ) was ~5.5 t C ha-1  year-1 lower on the Fire plot compared to the Control. Most of the Fire plot Rs reduction was specifically due to lower ground surface litter and root respiration. Mycorrhizal respiration on both plots was around ~20% of Rs . Soil surface temperature appeared to be more important than moisture as a driver of seasonal patterns in Rs at the site. Regular fire events decreased the seasonality of Rs at the study site, due to apparent differences in environmental sensitivities among biotic and abiotic soil components. These findings may contribute toward improved predictions of the amount and temporal pattern of C emissions across the large areas of tropical forest facing increasing fire disturbances associated with climate change and human activities.


Carbon Dioxide/chemistry , Fires , Rainforest , Soil/chemistry , Brazil , Carbon , Climate Change , Environmental Monitoring , Human Activities , Rain , Time Factors , Trees
18.
New Phytol ; 219(3): 851-869, 2018 08.
Article En | MEDLINE | ID: mdl-29451313

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Forests , Humidity , Trees/physiology , Tropical Climate , Carbon Dioxide/metabolism , Models, Theoretical
19.
Science ; 351(6276): 972-6, 2016 02 26.
Article En | MEDLINE | ID: mdl-26917771

In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.


Climate Change , Forests , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/metabolism , Tropical Climate , Demography , Light , Seasons
20.
Glob Chang Biol ; 22(7): 2516-25, 2016 07.
Article En | MEDLINE | ID: mdl-26750627

Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.


Carbon Cycle , Fires , Forests , Carbon/analysis , Soil/chemistry , South America , Trees/growth & development , Tropical Climate
...