Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 11(6): e200291, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39231384

ABSTRACT

BACKGROUND AND OBJECTIVES: The 2022 International Consortium for Optic Neuritis diagnostic criteria for optic neuritis (ON) include optical coherence tomography (OCT). The diagnostic value of intereye difference (IED) metrics is high for ON in patients with multiple sclerosis and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders, but unknown in myelin oligodendrocyte glycoprotein antibody-associated ON (MOG-ON). METHODS: A multicenter validation study was conducted on the published IED cutoff values (>4% or >4 µm in the macular ganglion cell and inner plexiform layer [mGCIP] or >5% or >5 µm in the peripapillary retinal nerve fiber layer [pRNFL]) in individuals with MOG-ON and age-matched and sex-matched healthy controls (HCs). Structural data were acquired with Spectralis spectral-domain OCT >6 months after ON. We calculated sensitivity, specificity, and receiver operating characteristics for both intereye percentage (IEPD) and absolute difference (IEAD). RESULTS: A total of 66 individuals were included (MOG-ON N = 33; HCs N = 33). ON was unilateral in 20 and bilateral in 13 subjects. In the pooled analysis, the mGCIP IEPD was most sensitive (92%), followed by the mGCIP IEAD (88%) and pRNFL (84%). The same pattern was found for the specificity (mGCIP IEPD 82%, IEAD 82%; pRNFL IEPD 82%, IEAD 79%).In subgroup analyses, the diagnostic sensitivity was higher in subjects with unilateral ON (>99% for all metrics) compared with bilateral ON (61%-78%). DISCUSSION: In individuals with MOG-ON, the diagnostic accuracy of OCT-based IED metrics for ON was high, especially of mGCIP IEPD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that the intereye difference on OCT can distinguish between those with MOG and normal controls.


Subject(s)
Autoantibodies , Myelin-Oligodendrocyte Glycoprotein , Optic Neuritis , Tomography, Optical Coherence , Humans , Myelin-Oligodendrocyte Glycoprotein/immunology , Optic Neuritis/immunology , Optic Neuritis/diagnosis , Optic Neuritis/diagnostic imaging , Female , Male , Adult , Middle Aged , Autoantibodies/blood , Sensitivity and Specificity , Young Adult
2.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200273, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941573

ABSTRACT

BACKGROUND AND OBJECTIVES: To systematically describe the clinical picture of double-antibody seronegative neuromyelitis optica spectrum disorders (DN-NMOSD) with specific emphasis on retinal involvement. METHODS: Cross-sectional data of 25 people with DN-NMOSD (48 eyes) with and without a history of optic neuritis (ON) were included in this study along with data from 25 people with aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (AQP4-NMOSD, 46 eyes) and from 25 healthy controls (HCs, 49 eyes) for comparison. All groups were matched for age and sex and included from the collaborative retrospective study of retinal optical coherence tomography (OCT) in neuromyelitis optica (CROCTINO). Participants underwent OCT with central postprocessing and local neurologic examination and antibody testing. Retinal neurodegeneration was quantified as peripapillary retinal nerve fiber layer thickness (pRNFL) and combined ganglion cell and inner plexiform layer thickness (GCIPL). RESULTS: This DN-NMOSD cohort had a history of [median (inter-quartile range)] 6 (5; 9) attacks within their 5 ± 4 years since onset. Myelitis and ON were the most common attack types. In DN-NMOSD eyes after ON, pRNFL (p < 0.001) and GCIPL (p = 0.023) were thinner compared with eyes of HCs. Even after only one ON episode, DN-NMOSD eyes already had considerable neuroaxonal loss compared with HCs. In DN-NMOSD eyes without a history of ON, pRNFL (p = 0.027) and GCIPL (p = 0.022) were also reduced compared with eyes of HCs. However, there was no difference in pRNFL and GCIPL between DN-NMOSD and AQP4-NMOSD for the whole group and for subsets with a history of ON and without a history of ON-as well as between variances of retinal layer thicknesses. DISCUSSION: DN-NMOSD is characterized by severe retinal damage after ON and attack-independent retinal neurodegeneration. Most of the damage occurs during the first ON episode, which highlights the need for better diagnostic markers in DN-NMOSD to facilitate an earlier diagnosis as well as for effective and early treatments. In this study, people with DN-NMOSD presented with homogeneous clinical and imaging findings potentially suggesting a common retinal pathology in these patients.


Subject(s)
Aquaporin 4 , Neuromyelitis Optica , Tomography, Optical Coherence , Humans , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/immunology , Neuromyelitis Optica/blood , Female , Male , Adult , Cross-Sectional Studies , Middle Aged , Aquaporin 4/immunology , Retrospective Studies , Autoantibodies/blood , Retina/diagnostic imaging , Retina/pathology , Retina/immunology
3.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200269, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941572

ABSTRACT

BACKGROUND AND OBJECTIVES: Retinal optical coherence tomography (OCT) provides promising prognostic imaging biomarkers for future disease activity in multiple sclerosis (MS). However, raw OCT-derived measures have multiple dependencies, supporting the need for establishing reference values adjusted for possible confounders. The purpose of this study was to investigate the capacity for age-adjusted z scores of OCT-derived measures to prognosticate future disease activity and disability worsening in people with MS (PwMS). METHODS: We established age-adjusted OCT reference data using generalized additive models for location, scale, and shape for peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layer (GCIP) thicknesses, involving 910 and 423 healthy eyes, respectively. Next, we transformed the retinal layer thickness of PwMS from 3 published studies into age-adjusted z scores (pRNFL-z and GCIP-z) based on the reference data. Finally, we investigated the association of pRNFL-z or GCIP-z as predictors with future confirmed disability worsening (Expanded Disability Status Scale score increase) or disease activity (failing of the no evidence of disease activity [NEDA-3] criteria) as outcomes. Cox proportional hazards models or logistic regression analyses were applied according to the original studies. Optimal cutoffs were identified using the Akaike information criterion as well as location with the log-rank and likelihood-ratio tests. RESULTS: In the first cohort (n = 863), 172 PwMS (24%) had disability worsening over a median observational period of 2.0 (interquartile range [IQR]:1.0-3.0) years. Low pRNFL-z (≤-2.04) were associated with an increased risk of disability worsening (adjusted hazard ratio (aHR) [95% CI] = 2.08 [1.47-2.95], p = 3.82e-5). In the second cohort (n = 170), logistic regression analyses revealed that lower pRNFL-z showed a higher likelihood for disability accumulation at the two-year follow-up (reciprocal odds ratio [95% CI] = 1.51[1.06-2.15], p = 0.03). In the third cohort (n = 78), 46 PwMS (59%) did not maintain the NEDA-3 status over a median follow-up of 2.0 (IQR: 1.9-2.1) years. PwMS with low GCIP-z (≤-1.03) had a higher risk of showing disease activity (aHR [95% CI] = 2.14 [1.03-4.43], p = 0.04). Compared with raw values with arbitrary cutoffs, applying the z score approach with optimal cutoffs showed better performance in discrimination and calibration (higher Harrell's concordance index and lower integrated Brier score). DISCUSSION: In conclusion, our work demonstrated reference cohort-based z scores that account for age, a major driver for disease progression in MS, to be a promising approach for creating OCT-derived measures useable across devices and toward individualized prognostication.


Subject(s)
Disease Progression , Multiple Sclerosis , Tomography, Optical Coherence , Humans , Female , Male , Adult , Middle Aged , Prognosis , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Severity of Illness Index
4.
Nat Commun ; 15(1): 5243, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897994

ABSTRACT

Retinal optical coherence tomography has been identified as biomarker for disease progression in relapsing-remitting multiple sclerosis (RRMS), while the dynamics of retinal atrophy in progressive MS are less clear. We investigated retinal layer thickness changes in RRMS, primary and secondary progressive MS (PPMS, SPMS), and their prognostic value for disease activity. Here, we analyzed 2651 OCT measurements of 195 RRMS, 87 SPMS, 125 PPMS patients, and 98 controls from five German MS centers after quality control. Peripapillary and macular retinal nerve fiber layer (pRNFL, mRNFL) thickness predicted future relapses in all MS and RRMS patients while mRNFL and ganglion cell-inner plexiform layer (GCIPL) thickness predicted future MRI activity in RRMS (mRNFL, GCIPL) and PPMS (GCIPL). mRNFL thickness predicted future disability progression in PPMS. However, thickness change rates were subject to considerable amounts of measurement variability. In conclusion, retinal degeneration, most pronounced of pRNFL and GCIPL, occurs in all subtypes. Using the current state of technology, longitudinal assessments of retinal thickness may not be suitable on a single patient level.


Subject(s)
Disease Progression , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Retina , Retinal Degeneration , Tomography, Optical Coherence , Humans , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology , Male , Female , Tomography, Optical Coherence/methods , Adult , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Retina/diagnostic imaging , Retina/pathology , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Chronic Progressive/physiopathology , Magnetic Resonance Imaging/methods , Prognosis , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology
5.
Evolution ; 78(6): 1109-1120, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38501929

ABSTRACT

Reproduction is a key feature of all organisms, yet the way in which it is achieved varies greatly across the tree of life. One striking example of this variation is the stick insect genus Bacillus, in which five different reproductive modes have been described: sex, facultative and obligate parthenogenesis, and two highly unusual reproductive modes: hybridogenesis and androgenesis. Under hybridogenesis, the entire genome from the paternal species is eliminated and replaced each generation by mating with the corresponding species. Under androgenesis, an egg is fertilized, but the developing diploid offspring bear two paternal genomes and no maternal genome, as a consequence of unknown mechanisms. Here, we reevaluate the previous descriptions of Bacillus lineages and the proposed F1 hybrid ancestries of the hybridogenetic and obligately parthenogenetic lineages (based on allozymes and karyotypes) from Sicily, where all these reproductive modes are found. We generate a chromosome-level genome assembly for a facultative parthenogenetic species (B. rossius) and combine extensive field sampling with RADseq and mtDNA data. We identify and genetically corroborate all previously described species and confirm the ancestry of hybrid lineages. All hybrid lineages have fully retained their F1 hybrid constitution throughout the genome, indicating that the elimination of the paternal genome in hybridogens is always complete and that obligate parthenogenesis in Bacillus hybrid species is not associated with an erosion of heterozygosity as known in other hybrid asexuals. Our results provide a stepping stone toward understanding the transitions between reproductive modes and the proximate mechanisms of genome elimination.


Subject(s)
Parthenogenesis , Animals , Male , Insecta/genetics , Female , Biological Evolution , Genome, Insect , Reproduction , Hybridization, Genetic , DNA, Mitochondrial/genetics
6.
Front Nutr ; 11: 1302308, 2024.
Article in English | MEDLINE | ID: mdl-38524854

ABSTRACT

Purpose: The dietary practices (DPs) of university students are influenced by many external factors. Therefore, we investigate how the DPs of students in Germany changed during the SARS-CoV-2 pandemic, what the main motivations were for those changes, and what effect the closure of university catering had on the DPs of students. Methods: A total of 560 students from two universities in Lübeck (Germany) were surveyed online during a pilot phase. The final online questionnaire was subsequently administered at 10 other German universities (399 respondents). The questionnaire surveyed sociodemographic factors, dietary habits, food consumption frequencies, and the relevance of university catering before and during the SARS-CoV-2 pandemic. Results: Regarding changes in DPs, similarities to previous studies were found, especially positive eating behaviors and an increasing interest in health- and nutrition-related sustainability. Students prepared meals freshly more often during the pandemic; consumed legumes, plant-based meats and dairy alternatives more often; and reduced their consumption of meat and milk compared to before the pandemic. The consumption frequency of sweets also decreased. It was observed that students consider eating communal in the university canteen to be highly relevant for their social interactions, which was only possible to a limited extent during the pandemic. Conclusion: In Germany, the DPs of university students as well as criteria regarding health and sustainability changed during the first 2 years of the SARS-CoV-2 pandemic. The social aspect of DPs became evident due to closed university catering. Still, changes in dietary patterns and eating habits were positively related to health and revealed some differences in the cross section of the population.

7.
PLoS Comput Biol ; 20(2): e1010980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329927

ABSTRACT

Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.


Subject(s)
Multiple Sclerosis , Humans , Prospective Studies , Tomography, Optical Coherence/methods , Retina , Brain , Heat-Shock Proteins
8.
Ann Clin Transl Neurol ; 11(1): 45-56, 2024 01.
Article in English | MEDLINE | ID: mdl-37903651

ABSTRACT

OBJECTIVE: Retrograde trans-synaptic neuroaxonal degeneration is considered a key pathological factor of subclinical retinal neuroaxonal damage in multiple sclerosis (MS). We aim to evaluate the longitudinal association of optic radiation (OR) lesion activity with retinal neuroaxonal damage and its role in correlations between retinal and brain atrophy in people with clinically isolated syndrome and early MS (pweMS). METHODS: Eighty-five pweMS were retrospectively screened from a prospective cohort (Berlin CIS cohort). Participants underwent 3T magnetic resonance imaging (MRI) for OR lesion volume and brain atrophy measurements and optical coherence tomography (OCT) for retinal layer thickness measurements. All pweMS were followed with serial OCT and MRI over a median follow-up of 2.9 (interquartile range: 2.6-3.4) years. Eyes with a history of optic neuritis prior to study enrollment were excluded. Linear mixed models were used to analyze the association of retinal layer thinning with changes in OR lesion volume and brain atrophy. RESULTS: Macular ganglion cell-inner plexiform layer (GCIPL) thinning was more pronounced in pweMS with OR lesion volume increase during follow-up compared to those without (Difference: -0.82 µm [95% CI:-1.49 to -0.15], p = 0.018). Furthermore, GCIPL thinning correlated with both OR lesion volume increase (ß [95% CI] = -0.27 [-0.50 to -0.03], p = 0.028) and brain atrophy (ß [95% CI] = 0.47 [0.25 to 0.70], p < 0.001). Correlations of GCIPL changes with brain atrophy did not differ between pweMS with or without OR lesion increase ( η p 2 = 5.92e-7 , p = 0.762). INTERPRETATION: Faster GCIPL thinning rate is associated with increased OR lesion load. Our results support the value of GCIPL as a sensitive biomarker reflecting both posterior visual pathway pathology and global brain neurodegeneration.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Retinal Ganglion Cells/pathology , Prospective Studies , Retrospective Studies , Central Nervous System Diseases/complications , Atrophy/pathology
10.
Cerebellum ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721679

ABSTRACT

This study aimed to identify quantitative biomarkers of motor function for cerebellar ataxia by evaluating gait and postural control using an RGB-depth camera-based motion analysis system. In 28 patients with degenerative cerebellar ataxia and 33 age- and sex-matched healthy controls, motor tasks (short-distance walk, closed feet stance, and stepping in place) were selected from a previously reported protocol, and scanned using Kinect V2 and customized software. The Clinical Assessment Scale for the Assessment and Rating of Ataxia (SARA) was also evaluated. Compared with the normal control group, the cerebellar ataxia group had slower gait speed and shorter step lengths, increased step width, and mediolateral trunk sway in the walk test (all P < 0.001). Lateral sway increased in the stance test in the ataxia group (P < 0.001). When stepping in place, the ataxia group showed higher arrhythmicity of stepping and increased stance time (P < 0.001). In the correlation analyses, the ataxia group showed a positive correlation between the total SARA score and arrhythmicity of stepping in place (r = 0.587, P = 0.001). SARA total score (r = 0.561, P = 0.002) and gait subscore (ρ = 0.556, P = 0.002) correlated with mediolateral truncal sway during walking. These results suggest that the RGB-depth camera-based motion analyses on mediolateral truncal sway during walking and arrhythmicity of stepping in place are useful digital motor biomarkers for the assessment of cerebellar ataxia, and could be utilized in future clinical trials.

11.
J Neuroinflammation ; 20(1): 209, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705084

ABSTRACT

BACKGROUND: In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS: An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS: Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS: Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.


Subject(s)
Encephalitis , Multiple Sclerosis , Humans , Animals , Mice , Acetylglucosamine/therapeutic use , Interleukin-17 , Glatiramer Acetate , Interleukin-6 , Multiple Sclerosis/drug therapy , Inflammation/drug therapy , Cytokines
12.
Mult Scler J Exp Transl Clin ; 9(3): 20552173231195879, 2023.
Article in English | MEDLINE | ID: mdl-37641618

ABSTRACT

Background: Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective: This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods: We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results: Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion: Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.

13.
Mult Scler Relat Disord ; 77: 104846, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37413855

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory diseases caused by demyelination and axonal damage in the central nervous system. Structural retinal imaging via optical coherence tomography (OCT) shows promise as a noninvasive biomarker for monitoring of MS. There are successful reports regarding the application of Artificial Intelligence (AI) in the analysis of cross-sectional OCTs in ophthalmologic diseases. However, the alteration of thicknesses of various retinal layers in MS is noticeably subtle compared to other ophthalmologic diseases. Therefore, raw cross-sectional OCTs are replaced with multilayer segmented OCTs for discrimination of MS and healthy controls (HCs). METHODS: To conform to the principles of trustworthy AI, interpretability is provided by visualizing the regional layer contribution to classification performance with the proposed occlusion sensitivity approach. The robustness of the classification is also guaranteed by showing the effectiveness of the algorithm while being tested on the new independent dataset. The most discriminative features from different topologies of the multilayer segmented OCTs are selected by the dimension reduction method. Support vector machine (SVM), random forest (RF), and artificial neural network (ANN) are used for classification. Patient-wise cross-validation (CV) is utilized to evaluate the performance of the algorithm, where the training and test folds contain records from different subjects. RESULTS: The most discriminative topology is determined to square with a size of 40 pixels and the most influential layers are the ganglion cell and inner plexiform layer (GCIPL) and inner nuclear layer (INL). Linear SVM resulted in 88% Accuracy (with standard deviation (std) = 0.49 in 10 times of execution to indicate the repeatability), 78% precision (std=1.48), and 63% recall (std=1.35) in the discrimination of MS and HCs using macular multilayer segmented OCTs. CONCLUSION: The proposed classification algorithm is expected to help neurologists in the early diagnosis of MS. This paper distinguishes itself from other studies by employing two distinct datasets, which enhances the robustness of its findings in comparison with previous studies with lack of external validation. This study aims to circumvent the utilization of deep learning methods due to the limited quantity of the available data and convincingly demonstrates that favorable outcomes can be achieved without relying on deep learning techniques.


Subject(s)
Multiple Sclerosis , Humans , Artificial Intelligence , Multiple Sclerosis/diagnostic imaging , Tomography, Optical Coherence , Early Diagnosis
14.
J Neurol Neurosurg Psychiatry ; 94(11): 924-933, 2023 11.
Article in English | MEDLINE | ID: mdl-37433662

ABSTRACT

BACKGROUND: Neurodegeneration in multiple sclerosis (MS) affects the visual system but dynamics and pathomechanisms over several years especially in primary progressive MS (PPMS) are not fully understood. METHODS: We assessed longitudinal changes in visual function, retinal neurodegeneration using optical coherence tomography, MRI and serum NfL (sNfL) levels in a prospective PPMS cohort and matched healthy controls. We investigated the changes over time, correlations between outcomes and with loss of visual function. RESULTS: We followed 81 patients with PPMS (mean disease duration 5.9 years) over 2.7 years on average. Retinal nerve fibre layer thickness (RNFL) was reduced in comparison with controls (90.1 vs 97.8 µm; p<0.001). Visual function quantified by the area under the log contrast sensitivity function (AULCSF) remained stable over a continuous loss of RNFL (0.46 µm/year, 95% CI 0.10 to 0.82; p=0.015) up until a mean turning point of 91 µm from which the AULCSF deteriorated. Intereye RNFL asymmetry above 6 µm, suggestive of subclinical optic neuritis, occurred in 15 patients and was related to lower AULCSF but occurred also in 5 out of 44 controls. Patients with an AULCSF progression had a faster increase in Expanded Disability Status Scale (beta=0.17/year, p=0.043). sNfL levels were elevated in patients (12.2 pg/mL vs 8.0 pg/mL, p<0.001), but remained stable during follow-up (beta=-0.14 pg/mL/year, p=0.291) and were not associated with other outcomes. CONCLUSION: Whereas neurodegeneration in the anterior visual system is already present at onset, visual function is not impaired until a certain turning point. sNfL is not correlated with structural or functional impairment in the visual system.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Optic Neuritis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Retinal Ganglion Cells , Nerve Fibers , Prospective Studies , Tomography, Optical Coherence/methods
15.
Article in English | MEDLINE | ID: mdl-36878713

ABSTRACT

BACKGROUND AND OBJECTIVES: With the increasing use of visually evoked potentials (VEPs) as quantitative outcome parameters for myelin in clinical trials, an in-depth understanding of longitudinal VEP latency changes and their prognostic potential for subsequent neuronal loss will be required. In this longitudinal multicenter study, we evaluated the association and prognostic potential of VEP latency for retinal neurodegeneration, measured by optical coherence tomography (OCT), in relapsing-remitting MS (RRMS). METHODS: We included 293 eyes of 147 patients with RRMS (age [years, median ± SD] 36 ± 10, male sex 35%, F/U [years, median {IQR} 2.1 {1.5-3.9}]): 41 eyes had a history of optic neuritis (ON) ≥6 months before baseline (CHRONIC-ON), and 252 eyes had no history of ON (CHRONIC-NON). P100 latency (VEP), macular combined ganglion cell and inner plexiform layer volume (GCIPL), and peripapillary retinal nerve fiber layer thickness (pRNFL) (OCT) were quantified. RESULTS: P100 latency change over the first year predicted subsequent GCIPL loss (36 months) across the entire chronic cohort (p = 0.001) and in (and driven by) the CHRONIC-NON subset (p = 0.019) but not in the CHRONIC-ON subset (p = 0.680). P100 latency and pRNFL were correlated at baseline (CHRONIC-NON p = 0.004, CHRONIC-ON p < 0.001), but change in P100 latency and pRNFL were not correlated. P100 latency did not differ longitudinally between protocols or centers. DISCUSSION: VEP in non-ON eyes seems to be a promising marker of demyelination in RRMS and of potential prognostic value for subsequent retinal ganglion cell loss. This study also provides evidence that VEP may be a useful and reliable biomarker for multicenter studies.


Subject(s)
Multiple Sclerosis , Optic Neuritis , Humans , Male , Evoked Potentials , Prognosis , Retina , Retinal Ganglion Cells , Female , Adult , Middle Aged
16.
BMC Urol ; 23(1): 46, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36978025

ABSTRACT

BACKGROUND: We evaluated the hydrostatic pressure of the renal pelvis (RPP) as a radiation-free alternative to fluoroscopic nephrostogram to assess ureteral patency after percutaneous nephrolithotomy (PCNL). METHODS: Retrospective non-inferiority study analyzing 248 PCNL-patients (86 female (35%) and 162 males (65%)) between 2007 and 2015. Postoperatively, RPP was measured using a central venous pressure manometer in cmH2O. The primary endpoint was to assess RPP depending on the patency of the ureter and the nephrostomy tube removal. Secondary, the upper limit of normal RPP of [Formula: see text] 20 cmH2O was assessed as an indicator of an unobstructed patency. RESULTS: The median procedure duration was 141 min (112-171.5) with a stone free rate of 82% (n = 202). RPP was significantly higher in patients with obstructive nephrostogram with 25.0 mmH2O (21.0-32.0) versus 20.0 mmH2O (16.0-24.0; p < 0.001). The pressure was lower in successful nephrostomy removal with 18 cmH2O (15-21) versus 23 cmH2O (20-29) in the leakage group (p < 0.001). The analysis of a cut-off of [Formula: see text] 20 cmH2O showed a sensitivity of 76.9% (95% CI [60.7%; 88.9%]) and a specificity of 61.5% (95% CI [54.6%; 68.2%]). The negative predictive value was 93.4% (95% CI: [87.9%; 97.0%]) and the positive predictive value 27.3% (95% CI [19.2%; 36.6%]). The accuracy of the model showed an AUC = 0.795 (95% CI [0.668; 0.862]). CONCLUSION: The hydrostatic RPP seems to allow a bedside evaluation of ureteral patency after PCNL.


Subject(s)
Kidney Calculi , Nephrolithotomy, Percutaneous , Nephrostomy, Percutaneous , Male , Humans , Female , Nephrolithotomy, Percutaneous/methods , Hydrostatic Pressure , Kidney Calculi/diagnostic imaging , Kidney Calculi/surgery , Retrospective Studies , Kidney Pelvis/diagnostic imaging , Kidney Pelvis/surgery , Nephrostomy, Percutaneous/methods
17.
J Neurol Neurosurg Psychiatry ; 94(7): 560-566, 2023 07.
Article in English | MEDLINE | ID: mdl-36810323

ABSTRACT

BACKGROUND: The novel optic neuritis (ON) diagnostic criteria include intereye differences (IED) of optical coherence tomography (OCT) parameters. IED has proven valuable for ON diagnosis in multiple sclerosis but has not been evaluated in aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders (AQP4+NMOSD). We evaluated the diagnostic accuracy of intereye absolute (IEAD) and percentage difference (IEPD) in AQP4+NMOSD after unilateral ON >6 months before OCT as compared with healthy controls (HC). METHODS: Twenty-eight AQP4+NMOSD after unilateral ON (NMOSD-ON), 62 HC and 45 AQP4+NMOSD without ON history (NMOSD-NON) were recruited by 13 centres as part of the international Collaborative Retrospective Study on retinal OCT in Neuromyelitis Optica study. Mean thickness of peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell and inner plexiform layer (GCIPL) were quantified by Spectralis spectral domain OCT. Threshold values of the ON diagnostic criteria (pRNFL: IEAD 5 µm, IEPD 5%; GCIPL: IEAD: 4 µm, IEPD: 4%) were evaluated using receiver operating characteristics and area under the curve (AUC) metrics. RESULTS: The discriminative power was high for NMOSD-ON versus HC for IEAD (pRNFL: AUC 0.95, specificity 82%, sensitivity 86%; GCIPL: AUC 0.93, specificity 98%, sensitivity 75%) and IEPD (pRNFL: AUC 0.96, specificity 87%, sensitivity 89%; GCIPL: AUC 0.94, specificity 96%, sensitivity 82%). The discriminative power was high/moderate for NMOSD-ON versus NMOSD-NON for IEAD (pRNFL: AUC 0.92, specificity 77%, sensitivity 86%; GCIP: AUC 0.87, specificity 85%, sensitivity 75%) and for IEPD (pRNFL: AUC 0.94, specificity 82%, sensitivity 89%; GCIP: AUC 0.88, specificity 82%, sensitivity 82%). CONCLUSIONS: Results support the validation of the IED metrics as OCT parameters of the novel diagnostic ON criteria in AQP4+NMOSD.


Subject(s)
Aquaporins , Neuromyelitis Optica , Optic Neuritis , Humans , Neuromyelitis Optica/diagnosis , Retrospective Studies , Benchmarking , Optic Neuritis/diagnosis , Tomography, Optical Coherence/methods , Autoantibodies , Aquaporin 4
18.
Eur J Neurol ; 30(4): 982-990, 2023 04.
Article in English | MEDLINE | ID: mdl-36635219

ABSTRACT

BACKGROUND AND PURPOSE: Thinning of the retinal combined ganglion cell and inner plexiform layer (GCIP) as measured by optical coherence tomography (OCT) is a common finding in patients with multiple sclerosis. This study aimed to investigate whether a single retinal OCT analysis allows prediction of future disease activity after a first demyelinating event. METHODS: This observational cohort study included 201 patients with recently diagnosed clinically isolated syndrome or relapsing-remitting multiple sclerosis from two German tertiary referral centers. Individuals underwent neurological examination, magnetic resonance imaging, and OCT at baseline and at yearly follow-up visits. RESULTS: Patients were included at a median disease duration of 2.0 months. During a median follow-up of 59 (interquartile range = 43-71) months, 82% of patients had ongoing disease activity as demonstrated by failing the no evidence of disease activity 3 (NEDA-3) criteria, and 19% presented with confirmed disability worsening. A GCIP threshold of ≤77 µm at baseline identified patients with a high risk for NEDA-3 failure (hazard ratio [HR] = 1.7, 95% confidence interval [CI] = 1.1-2.8, p = 0.04), and GCIP measures of ≤69 µm predicted disability worsening (HR = 2.2, 95% CI = 1.2-4.3, p = 0.01). Higher rates of annualized GCIP loss increased the risk for disability worsening (HR = 2.5 per 1 µm/year increase of GCIP loss, p = 0.03). CONCLUSIONS: Ganglion cell thickness as measured by OCT after the initial manifestation of multiple sclerosis may allow early risk stratification as to future disease activity and progression.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Retinal Ganglion Cells/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis/pathology , Retina/pathology , Cohort Studies , Tomography, Optical Coherence/methods
19.
J Neurol ; 270(4): 2139-2148, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36625888

ABSTRACT

BACKGROUND: Retinal degeneration leading to optical coherence tomography (OCT) changes is frequent in patients with multiple sclerosis (PwMS). OBJECTIVE: To investigate associations among OCT changes, MRI measurements of global and regional brain volume loss, and physical and cognitive impairment in PwMS. METHODS: 95 PwMS and 52 healthy controls underwent OCT and MRI examinations. Mean peripapillary retinal nerve fiber layer (pRNFL) thickness and ganglion cell/inner plexiform layer (GCIPL) volume were measured. In PwMS disability was quantified with the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). Associations between OCT, MRI, and clinical measures were investigated with multivariable regression models. RESULTS: In PwMS, pRNFL and GCIPL were associated with the volume of whole brain (p < 0.04), total gray matter (p < 0.002), thalamus (p ≤ 0.04), and cerebral cortex (p ≤ 0.003) -both globally and regionally-, but not white matter. pRNFL and GCIPL were also inversely associated with T2-lesion volume (T2LV), especially in the optic radiations (p < 0.0001). The brain volumes associated with EDSS and SDMT significantly overlapped with those correlating with pRNFL and GCIPL. CONCLUSIONS: In PwMS, pRNFL and GCIPL reflect the integrity of clinically-relevant gray matter structures, underling the value of OCT measures as markers of neurodegeneration and disability in multiple sclerosis.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Retinal Ganglion Cells/pathology , Gray Matter/diagnostic imaging , Tomography, Optical Coherence/methods , Cerebral Cortex
20.
Lancet Neurol ; 22(3): 268-282, 2023 03.
Article in English | MEDLINE | ID: mdl-36706773

ABSTRACT

Serum antibodies directed against myelin oligodendrocyte glycoprotein (MOG) are found in patients with acquired CNS demyelinating syndromes that are distinct from multiple sclerosis and aquaporin-4-seropositive neuromyelitis optica spectrum disorder. Based on an extensive literature review and a structured consensus process, we propose diagnostic criteria for MOG antibody-associated disease (MOGAD) in which the presence of MOG-IgG is a core criterion. According to our proposed criteria, MOGAD is typically associated with acute disseminated encephalomyelitis, optic neuritis, or transverse myelitis, and is less commonly associated with cerebral cortical encephalitis, brainstem presentations, or cerebellar presentations. MOGAD can present as either a monophasic or relapsing disease course, and MOG-IgG cell-based assays are important for diagnostic accuracy. Diagnoses such as multiple sclerosis need to be excluded, but not all patients with multiple sclerosis should undergo screening for MOG-IgG. These proposed diagnostic criteria require validation but have the potential to improve identification of individuals with MOGAD, which is essential to define long-term clinical outcomes, refine inclusion criteria for clinical trials, and identify predictors of a relapsing versus a monophasic disease course.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Optic Neuritis , Humans , Myelin-Oligodendrocyte Glycoprotein , Aquaporin 4 , Multiple Sclerosis/diagnosis , Immunoglobulin G , Autoantibodies
SELECTION OF CITATIONS
SEARCH DETAIL