Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Manag Res ; 14: 547-559, 2022.
Article in English | MEDLINE | ID: mdl-35210852

ABSTRACT

INTRODUCTION: Allogeneic hematopoietic cell transplantation (HCT) during chemotherapy-induced aplasia may offer long-term survival in acute myeloid leukemia (AML) with otherwise poor prognosis including ELN adverse risk, relapsed or refractory disease. However, the value of residual morphologic disease prior HCT in this context has not been conclusively settled until yet. Therefore, we aimed to investigate variables predicting outcome in this unique setting of sequential conditioning therapy, with a focus on pretreatment morphologic blast count. In contrast to the most popular FLAMSA-RIC protocol, we used a melphalan-based conditioning regimen during aplasia. METHODS: We retrospectively analyzed data from 173 AML patients who underwent a sequential melphalan-based conditioning therapy between 2003 and 2015 at our centre. All patients participated either in the prospective Phase 2 BRIDGE trial (NCT01295307), the Phase 3 AML2003 study (NCT00180102) or were treated according to this protocol and underwent allogeneic HCT after melphalan-based conditioning in treatment-induced aplasia. RESULTS: Median bone marrow blast count prior to conditioning was 10% (range, 0-96%). Four year probabilities of EFS and OS were 34% (95% CI, 28-43%) and 43% (95% CI, 36-52%), respectively. In multivariate analysis, blast count >20% was associated with worse EFS (HR = 1.93; p = 0.009) and OS (HR = 1.80; p = 0.026). This effect was not significant anymore for HCT during 1st line therapy. CONCLUSION: Allogeneic HCT in aplasia with a melphalan-based conditioning regimen has the potential to cure a subset of adverse risk AML patients, even with persistent morphological disease prior HCT. However, a high pre-transplant blast count still indicates patients with a dismal prognosis, especially in the relapsed patient group, for whom post-transplant strategies should be considered to further optimize post HCT outcome.

2.
Cytotherapy ; 22(1): 21-26, 2020 01.
Article in English | MEDLINE | ID: mdl-31883948

ABSTRACT

Isolation of mesenchymal stromal cells (MSCs) from pretreated, hematologic patients is challenging. Especially after allogeneic hematopoietic cell transplantation (HCT), standard protocols using bone marrow aspirates fail to reliably recover sufficient cell numbers. Because MSCs are considered to contribute to processes that mainly affect the outcome after transplantation, such as an efficient lymphohematopoietic recovery, extent of graft-versus-host disease as well as the occurrence of leukemic relapse, it is of great clinical relevance to investigate MSC function in this context. Previous studies showed that MSCs can be isolated by collagenase digestion of large bone fragments of hematologically healthy patients undergoing hip replacement or knee surgeries. We have now further developed this procedure for the isolation of MSCs from hematologic patients after allogeneic HCT by using trephine biopsy specimens obtained during routine examinations. Comparison of aspirates and trephine biopsy specimens from patients after allogeneic HCT revealed a significantly higher frequency of clonogenic MSCs (colony-forming unit-fibroblast [CFU-F]) in trephine biopsy specimens (mean, 289.8 ± standard deviation 322.5 CFU-F colonies/1 × 106 total nucleated cells versus 4.2 ± 9.9; P < 0.0001). Subsequent expansion of functional MSCs isolated from trephine biopsy specimen was more robust and led to a significantly higher yield compared with control samples expanded from aspirates (median, 1.6 × 106; range, 0-2.3 × 107 P0 MSCs versus 5.4 × 104; range, 0-8.9 × 106; P < 0.0001). Using trephine biopsy specimens as MSC source facilitates the investigation of various clinical questions.


Subject(s)
Bone Marrow Cells/cytology , Hematopoietic Stem Cell Transplantation/methods , Leukemia/therapy , Mesenchymal Stem Cells/cytology , Adult , Aged , Biopsy , Bone Marrow , Collagenases/pharmacology , Female , Graft vs Host Disease/pathology , Humans , Male , Middle Aged , Tumor Cells, Cultured , Young Adult
3.
Brain Behav ; 5(9): e00368, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26442754

ABSTRACT

BACKGROUND: Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. METHODS: To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy ((1)H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. RESULTS: CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in (1)H-MRS. CONCLUSION: Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that (1)H-MRS allows the detection of neurogenesis-associated plasticity in the human brain.


Subject(s)
Brain Neoplasms/prevention & control , Hippocampus/drug effects , Hippocampus/radiation effects , Leukemia/drug therapy , Leukemia/radiotherapy , Neuronal Plasticity/drug effects , Adult , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/radiation effects , Female , Hippocampus/metabolism , Humans , Leukemia/metabolism , Leukemia/pathology , Longitudinal Studies , Magnetic Resonance Spectroscopy , Male , Maze Learning/drug effects , Nerve Net , Neurogenesis/drug effects , Neurogenesis/radiation effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurons/radiation effects , Pilot Projects , Spatial Memory/drug effects , Spatial Memory/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...