Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
PLoS One ; 19(9): e0310524, 2024.
Article in English | MEDLINE | ID: mdl-39298444

ABSTRACT

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is an inherited disease, the common variant caused by a Pi*Z mutation in the SERPINA1 gene. Pi*Z AAT increases the risk of pulmonary emphysema and liver disease. Berberine (BBR) is a nature dietary supplement and herbal remedy. Emerging evidence revealed that BBR has remarkable liver-protective properties against various liver diseases. In the present study, we investigated the therapeutic effects and toxicities of BBR in Pi*Z hepatocytes and Pi*Z transgenic mice. METHODS: Huh7.5 and Huh7.5Z (which carries the Pi*Z mutation) cells were treated with different concentrations of BBR for 48 hours. MTT was performed for cell viability assay. Intracellular AAT levels were evaluated by western blot. In vivo studies were carried out in wild type, native phenotype AAT (Pi*M), and Pi*Z AAT transgenic mice. Mice were treated with 50 mg/kg/day of BBR or solvent only by oral administration for 30 days. Western blot and liver histopathological examinations were performed to evaluate therapeutic benefits and liver toxicity of BBR. RESULTS: BBR reduced intracellular AAT levels in Huh7.5Z cells, meanwhile, no Pi*Z-specific toxicity was observed. However, BBR did not reduce liver AAT load but significantly potentiated liver inflammation and fibrosis accompanying the activation of unfolded protein response and mTOR in Pi*Z mice, but not in wild type and Pi*M mice. CONCLUSIONS: BBR exacerbated liver inflammation and fibrosis specifically in Pi*Z mice. This adverse effect may be associated with the activation of unfolded protein response and mTOR. This study implicates that BBR should be avoided by AATD patients.


Subject(s)
Berberine , Liver Cirrhosis , Mice, Transgenic , alpha 1-Antitrypsin , Animals , Berberine/pharmacology , Mice , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Disease Models, Animal , TOR Serine-Threonine Kinases/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatitis/pathology , Hepatitis/metabolism , Hepatitis/drug therapy , Hepatitis/etiology , Unfolded Protein Response/drug effects
2.
bioRxiv ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39229038

ABSTRACT

Liver fibrosis associated with increased mortality is caused by activation of hepatic stellate cells and excessive production and accumulation of extracellular matrix in response to fibrotic insults. It has been shown that in addition to liver inflammation, systemic inflammation also contributes to liver fibrogenesis. A deeper understanding of mechanisms that control liver fibrotic response to intra- and extra-hepatic inflammation is essential to develop novel clinical strategies against this disease. Extracellular vesicles (EV) have been recognized as immune mediators that facilitate activation of hepatic stellate cells. In inflammatory diseases, activated neutrophils release neutrophil elastase (NE) bound to EV, which has been identified as a significant contributor to inflammation by promoting immune cell activation. Here, we aimed to explore the role of inflammation derived plasma EV-associated NE in liver fibrogenesis and its potential mechanisms. We show EV-associated NE induces activation, proliferation and migration of hepatic stellate cells by promoting activation of the ERK1/2 signaling pathway. This effect did not occur through EV without surface NE, and Sivelestat, a NE inhibitor, inhibited activation of the ERK1/2 signaling pathway mediated by EV-associated NE. Moreover, we found plasma EV-associated NE increases deposition of collagen1 and α-smooth muscle actin in the liver of a mouse model of liver fibrosis (Mdr2-/-). Notably, this effect does not occur in control mice without preexisting liver disease. These data suggest that EV-associated NE is a pro-fibrogenic factor for hepatic stellate cell activation via the ERK1/2 signaling pathway in pre-existing liver injuries. Inhibition of the plasma EV-associated NE in inflammatory conditions may be a therapeutic target for liver fibrosis in patients with inflammatory diseases.

3.
Gastroenterology ; 167(5): 1008-1018.e5, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38964420

ABSTRACT

BACKGROUND & AIMS: Homozygous ZZ alpha-1 antitrypsin (AAT) deficiency produces mutant AAT (Z-AAT) proteins in hepatocytes, leading to progressive liver fibrosis. We evaluated the safety and efficacy of an investigational RNA interference therapeutic, fazirsiran, that degrades Z-AAT messenger RNA, reducing deleterious protein synthesis. METHODS: This ongoing, phase 2 study randomized 40 patients to subcutaneous placebo or fazirsiran 25, 100, or 200 mg. The primary endpoint was percent change in serum Z-AAT concentration from baseline to week 16. Patients with fibrosis on baseline liver biopsy received treatment on day 1, at week 4, and then every 12 weeks and had a second liver biopsy at or after weeks 48, 72, or 96. Patients without fibrosis received 2 doses on day 1 and at week 4. RESULTS: At week 16, least-squares mean percent declines in serum Z-AAT concentration were -61%, -83%, and -94% with fazirsiran 25, 100, and 200 mg, respectively, vs placebo (all P < .0001). Efficacy was sustained through week 52. At postdose liver biopsy, fazirsiran reduced median liver Z-AAT concentration by 93% compared with an increase of 26% with placebo. All fazirsiran-treated patients had histologic reduction from baseline in hepatic globule burden. Portal inflammation improved in 5 of 12 and 0 of 8 patients with a baseline score of >0 in the fazirsiran and placebo groups, respectively. Histologic meta-analysis of histologic data in viral hepatitis score improved by >1 point in 7 of 14 and 3 of 8 patients with fibrosis of >F0 at baseline in the fazirsiran and placebo groups, respectively. No adverse events led to discontinuation, and pulmonary function tests remained stable. CONCLUSIONS: Fazirsiran reduced serum and liver concentrations of Z-AAT in a dose-dependent manner and reduced hepatic globule burden. (ClinicalTrials.gov, Number NCT03945292).


Subject(s)
Liver Cirrhosis , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Humans , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/genetics , Male , Female , Adult , Middle Aged , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/administration & dosage , Treatment Outcome , Liver Cirrhosis/drug therapy , Liver Cirrhosis/diagnosis , Liver/pathology , Liver/drug effects , Liver/metabolism , Double-Blind Method , Biopsy , RNAi Therapeutics , Dose-Response Relationship, Drug , Young Adult , RNA, Small Interfering
4.
Chronic Obstr Pulm Dis ; 11(3): 282-292, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809792

ABSTRACT

Background: Alpha-1 antitrypsin deficiency (AATD) is characterized by low alpha-1 antitrypsin (AAT) levels, predisposing individuals to lung disease. The standard of care, plasma-derived AAT (pdAAT), is delivered as weekly infusions to maintain serum AAT concentrations ≥11µM (≈50% of those in healthy individuals). INBRX-101, a recombinant human AAT-Fc fusion protein, was designed to have a longer half-life and achieve higher AAT levels than pdAAT. Methods: In this phase 1 dose-escalation study (N=31), adults with AATD received 1 dose (part 1) or 3 doses (part 2) of 10 (part 1), 40, 80, or 120mg/kg INBRX-101 every 3 weeks (Q3W) via intravenous infusion. The primary endpoint was safety and tolerability. Secondary endpoints were pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of INBRX-101. Results: INBRX-101 was well tolerated. Most treatment-emergent adverse events were grade ≤2. In part 2 (n=18; each dose, n=6), dose-related increases in serum functional AAT (fAAT) were observed; mean fAAT levels remained above the 21 µM target for up to 4 weeks after the final dose in the 120-mg/kg cohort. Antidrug antibodies had no meaningful impact on PK or PD. INBRX-101 was detected in pulmonary epithelial lining fluid (PELF) from all patients assessed (n=11), and PELF fAAT increased after dosing. PK/PD modeling projected steady-state serum fAAT ≥21µM at 120 mg/kg Q3W (average concentration ≈43µM; trough concentration ≈28µM) and Q4W (≈34µM; ≈21µM). Conclusion: The favorable safety profile and ability to maintain serum fAAT levels >21µM with extended-interval dosing, support a phase 2 trial evaluating Q3W and Q4W dosing of INBRX-101.

5.
Aliment Pharmacol Ther ; 59(10): 1183-1195, 2024 05.
Article in English | MEDLINE | ID: mdl-38516814

ABSTRACT

BACKGROUND: Alpha-1 antitrypsin liver disease (AATLD) occurs in a subset of patients with alpha-1 antitrypsin deficiency. Risk factors for disease progression and specific pathophysiologic features are not well known and validated non-invasive assessments for disease severity are lacking. Currently, there are no approved treatments for AATLD. AIMS: To outline existing understanding of AATLD and to identify knowledge gaps critical to improving clinical trial design and development of new treatments. METHODS: This report was developed following a multi-stakeholder forum organised by the Alpha-1 Antitrypsin Deficiency Related Liver Disease Expert Panel in which experts presented an overview of the available literature on this topic. RESULTS: AATLD results from a 'gain of toxic function' and primarily manifests in those with the homozygous Pi*ZZ genotype. Accumulation of misfolded 'Z' AAT protein in liver cells triggers intracellular hepatocyte injury which may ultimately lead to hepatic fibrosis. Male gender, age over 50 years, persistently elevated liver tests, concomitant hepatitis B or C virus infection, and metabolic syndrome, including obesity and type 2 diabetes mellitus, are known risk factors for adult AATLD. While the gold standard for assessing AATLD disease activity is liver histology, less invasive measures with low intra- and inter-observer variability are needed. Measurement of liver stiffness shows promise; validated thresholds for staging AATLD are in development. Such advances will help patients by enabling risk stratification and personalised surveillance, along with streamlining the development process for novel therapies. CONCLUSIONS: This inaugural forum generated a list of recommendations to address unmet needs in the field of AATLD.


Subject(s)
Biomarkers , Drug Development , Liver Diseases , alpha 1-Antitrypsin Deficiency , Humans , alpha 1-Antitrypsin Deficiency/complications , Liver Diseases/etiology , alpha 1-Antitrypsin , Risk Factors , Disease Progression
6.
Thorax ; 79(9): 822-833, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38418195

ABSTRACT

INTRODUCTION: Altered complement component 3 (C3) activation in patients with alpha-1 antitrypsin (AAT) deficiency (AATD) has been reported. To understand the potential impact on course of inflammation, the aim of this study was to investigate whether C3d, a cleavage-product of C3, triggers interleukin (IL)-1ß secretion via activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. The objective was to explore the effect of AAT augmentation therapy in patients with AATD on the C3d/complement receptor 3 (CR3) signalling axis of monocytes and on circulating pro-inflammatory markers. METHODS: Inflammatory mediators were detected in blood from patients with AATD (n=28) and patients with AATD receiving augmentation therapy (n=19). Inflammasome activation and IL-1ß secretion were measured in monocytes of patients with AATD, and following C3d stimulation in the presence or absence of CR3 or NLRP3 inhibitors. RESULTS: C3d acting via CR3 induces NLRP3 and pro-IL-1ß production, and through induction of endoplasmic reticulum (ER) stress and calcium flux, triggers caspase-1 activation and IL-1ß secretion. Treatment of individuals with AATD with AAT therapy results in decreased plasma levels of C3d (3.0±1.2 µg/mL vs 1.3±0.5 µg/mL respectively, p<0.0001) and IL-1ß (115.4±30 pg/mL vs 73.3±20 pg/mL, respectively, p<0.0001), with a 2.0-fold decrease in monocyte NLRP3 protein expression (p=0.0303), despite continued ER stress activation. DISCUSSION: These results provide strong insight into the mechanism of complement-driven inflammation associated with AATD. Although the described variance in C3d and NLRP3 activation decreased post AAT augmentation therapy, results demonstrate persistent C3d and monocyte ER stress, with implications for new therapeutics and clinical practice.


Subject(s)
Inflammasomes , Interleukin-1beta , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-1beta/metabolism , Inflammasomes/metabolism , Monocytes/metabolism , Male , Female , alpha 1-Antitrypsin Deficiency/metabolism , alpha 1-Antitrypsin Deficiency/drug therapy , Middle Aged , Adult , Aged , Signal Transduction
7.
Hepatol Commun ; 8(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38285890

ABSTRACT

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by misfolding and accumulation of mutant alpha-1 antitrypsin (ZAAT) in the endoplasmic reticulum of hepatocytes. Hepatic ZAAT aggregates acquire a toxic gain-of-function that impacts the endoplasmic reticulum which is theorized to cause liver disease in individuals with AATD who present asymptomatic until late-stage cirrhosis. Currently, there is no treatment for AATD-mediated liver disease except liver transplantation. In our study of mitochondrial RNA, we identified that Sirtuin3 (SIRT3) plays a role in the hepatic phenotype of AATD. METHODS: Utilizing RNA and protein analysis in an in vitro AATD model, we investigated the role of SIRT3 in the pathophysiology of AATD-mediated liver disease while also characterizing our novel, transgenic AATD mouse model. RESULTS: We show lower expression of SIRT3 in ZAAT-expressing hepatocytes. In contrast, the overexpression of SIRT3 increases hepatic ZAAT degradation. ZAAT degradation mediated by SIRT3 appeared independent of proteasomal degradation and regular autophagy pathways. We observed that ZAAT-expressing hepatocytes have aberrant accumulation of lipid droplets, with ZAAT polymers localizing on the lipid droplet surface in a direct interaction with Perilipin2, which coats intracellular lipid droplets. SIRT3 overexpression also induced the degradation of lipid droplets in ZAAT-expressing hepatocytes. We observed that SIRT3 overexpression induces lipophagy by enhancing the interaction of Perilipin2 with HSC70. ZAAT polymers then degrade as a consequence of the mobilization of lipids through this process. CONCLUSIONS: In this context, SIRT3 activation may eliminate the hepatic toxic gain-of-function associated with the polymerization of ZAAT, providing a rationale for a potential novel therapeutic approach to the treatment of AATD-mediated liver disease.


Subject(s)
Sirtuin 3 , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Animals , Mice , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/metabolism , Autophagy/genetics , Mice, Transgenic , Polymers , Sirtuin 3/genetics , Humans , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism
8.
Respir Res ; 24(1): 309, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082274

ABSTRACT

Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 µM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 µM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.


Subject(s)
alpha 1-Antitrypsin Deficiency , alpha-Defensins , Humans , Monocytes/metabolism , alpha-Defensins/metabolism , Macrophages/metabolism , alpha 1-Antitrypsin Deficiency/metabolism , Macrophages, Alveolar/metabolism , STAT3 Transcription Factor/metabolism
10.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37727673

ABSTRACT

Background: Alpha-1 antitrypsin deficiency (AATD) is an under-recognised genetic cause of chronic obstructive lung disease, and many fewer cases than estimated have been identified. Can a reported respiratory and hepatic disease history from a large AATD testing database be used to stratify a person's risk of severe AATD? Methods: We analysed data extracted from the AATD National Detection Program. Demographics and medical history were evaluated to predict AATD PI*ZZ genotype. Logistic regression and integer programming models identified predictors and obtained risk scores. These were internally validated on a subset of the data. Results: Out of 301 343 subjects, 1529 (0.5%) had PI*ZZ genotype. Predictors of severe AATD were asthma, bronchitis, emphysema, allergies, bronchiectasis, family history of AATD, cirrhosis, hepatitis and history of abnormal liver function tests. The derived model establishes a subject's risk of severe AATD, and scores ≥0 had an estimated risk of 0.41%, sensitivity 84.62% and specificity 24.32%. A model simulating guideline recommendations had an estimated risk of 0.51% with a sensitivity of 37.98% and specificity 46.60%. By recommending screening for scores ≥0, we estimate that more subjects would be screened (75.7% versus 53.4%) and detected (84.6% versus 58.2%) compared to a guideline-simulated model. Conclusion: This medical history risk model is a useful predictive tool to detect subjects at greater risk of having severe AATD and improves sensitivity of detection. Scores <0 are at lower risk and may need not be screened; testing is recommended for scores ≥0 and consistent with current guidelines.

12.
Am J Med ; 136(10): 1011-1017, 2023 10.
Article in English | MEDLINE | ID: mdl-37451388

ABSTRACT

BACKGROUND: Alpha-1 antitrypsin deficiency is an under-recognized genetic cause of chronic lung and liver disease; it remains unclear what the testing frequency and disparities are for alpha-1 antitrypsin deficiency. METHODS: This is a retrospective cohort study of people with newly diagnosed chronic obstructive pulmonary disease and liver disease identified at the University of Florida between January 1, 2012 and December 31, 2021. We performed incidence and prevalence analysis for alpha-1 antitrypsin (AAT) testing and point-biserial correlation analysis for tobacco use and AAT testing. We evaluated characteristics with AAT testing using adjusted multivariable logistic regression. RESULTS: Among 75,810 subjects with newly diagnosed chronic obstructive pulmonary disease and liver disease between 2012 and 2021, 4248 (5.6%) were tested for AAT deficiency. All subjects had an AAT level performed, while 1654 (39%) had phenotype testing. Annual incidence of testing increased for subjects with newly diagnosed chronic obstructive pulmonary disease or liver disease from 2.8% and 5.4%, respectively, in 2012 to 4.1% and 11.3%, respectively, in 2021. Adjusted multivariable regression analysis showed factors favoring AAT testing were White race, and concomitant chronic obstructive pulmonary disease and liver disease. Increasing age, non-White race, current tobacco use, and being a male with chronic obstructive pulmonary disease had lower odds of AAT testing. CONCLUSION: Although slowly improving, testing for AAT deficiency continues to have a low uptake in the clinical setting despite guidelines recommending broader testing. Individuals of White race and those with concomitant chronic obstructive pulmonary disease and liver disease are more likely to be tested, while older subjects, individuals of non-White race, current tobacco use, and men with chronic obstructive pulmonary disease are less favored to be tested.


Subject(s)
Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin Deficiency , Male , Humans , Retrospective Studies , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/epidemiology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Phenotype , Logistic Models
13.
ERJ Open Res ; 9(3)2023 May.
Article in English | MEDLINE | ID: mdl-37313399

ABSTRACT

Background: Animal models using intratracheal instillation show that elastase, unopposed by α1-antitrypsin (AAT), causes alveolar damage and haemorrhage associated with emphysematous changes. The aim of the present study was to characterise any relationship between alveolar haemorrhage and human AAT deficiency (AATD) using bronchoalveolar lavage (BAL) and lung explant samples from AATD subjects. Methods: BAL samples (17 patients, 15 controls) were evaluated for free haem (iron protoporphyrin IX) and total iron concentrations. Alveolar macrophage activation patterns were assessed using RNA sequencing and validated in vitro using haem-stimulated, monocyte-derived macrophages. Lung explants (seven patients, four controls) were assessed for iron sequestration protein expression patterns using Prussian blue stain and ferritin immunohistochemistry, as well as ferritin iron imaging and elemental analysis by transmission electron microscopy. Tissue oxidative damage was assessed using 8-hydroxy-2'-deoxyguanosine immunohistochemistry. Results: BAL collected from AATD patients showed significantly elevated free haem and total iron concentrations. Alveolar and interstitial macrophages in AATD explants showed elevated iron and ferritin accumulation in large lysosomes packed by iron oxide cores with degraded ferritin protein cages. BAL macrophage RNA sequencing showed innate pro-inflammatory activation, replicated in vitro by haemin exposure, which also triggered reactive oxygen species generation. AATD explants showed massive oxidative DNA damage in both lung epithelial cells and macrophages. Conclusions: BAL and tissue markers of alveolar haemorrhage, together with molecular and cellular evidence of macrophage innate pro-inflammatory activation and oxidative damage, are consistent with free haem stimulation. Overall, this initial study provides evidence for a pathogenetic role of elastase-induced alveolar haemorrhage in AATD emphysema.

14.
Biomedicines ; 11(2)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36831059

ABSTRACT

The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.

15.
Respir Res ; 24(1): 40, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732772

ABSTRACT

BACKGROUND: Alpha-1-antitrypsin deficient (AATD) individuals are prone to develop early age of onset chronic obstructive pulmonary disease (COPD) more severe than non-genetic COPD. Here, we investigated the characteristics of lower respiratory tract of AATD individuals prior to the onset of clinically significant COPD. METHODS: Bronchoalveolar lavage was performed on 22 AATD with normal lung function and 14 healthy individuals. Cell counts and concentrations of proteases, alpha-1-antitrypsin and proinflammatory mediators were determined in the bronchoalveolar lavage fluid from study subjects. In order to determine the airway inflammation, we also analyzed immune cell components of the large airways from bronchial biopsies using immunohistochemistry in both study subjects. Finally, we made comparisons between airway inflammation and lung function rate of decline using four repeated lung function tests over one year in AATD individuals. RESULTS: AATD individuals with normal lung function had 3 folds higher neutrophil counts, 2 folds increase in the proteases levels, and 2-4 folds higher levels of IL-8, IL-6, IL-1ß, and leukotriene B4 in their epithelial lining fluid compared to controls. Neutrophil elastase levels showed a positive correlation with the levels of IL-8 and neutrophils in AATD epithelial lining fluid. AATD individuals also showed a negative correlation of baseline FEV1 with neutrophil count, neutrophil elastase, and cytokine levels in epithelial lining fluid (p < 0.05). In addition, we observed twofold increase in the number of lymphocytes, macrophages, neutrophils, and mast cells of AATD epithelial lining fluid as compared to controls. CONCLUSION: Mild inflammation is present in the lower respiratory tract and airways of AATD individuals despite having normal lung function. A declining trend was also noticed in the lung function of AATD individuals which was correlated with pro-inflammatory phenotype of their lower respiratory tract. This results suggest the presence of proinflammatory phenotype in AATD lungs. Therefore, early anti-inflammatory therapies may be a potential strategy to prevent progression of lung disease in AATD individuals.


Subject(s)
Pneumonia , Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin Deficiency , Humans , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/genetics , Leukocyte Elastase , Interleukin-8 , alpha 1-Antitrypsin/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Lung , Inflammation/diagnosis
16.
Chronic Obstr Pulm Dis ; 10(1): 7-21, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36367950

ABSTRACT

The SERPINA1 gene encodes the serine protease inhibitor alpha-1 antitrypsin (AAT) and is located on chromosome 14q31-32.3 in a cluster of homologous genes likely formed by exon duplication. AAT has a variety of anti-inflammatory properties. Its clinical relevance is best illustrated by the genetic disease alpha-1 antitrypsin deficiency (AATD) which is associated with an increased risk for chronic obstructive pulmonary disease (COPD) and cirrhosis. While 2 single nucleotide polymorphisms (SNPs) , S and Z, are responsible for more than 95% of all individuals with AATD, there are a number of rare variants associated with deficiency and dysfunction, as well as those associated with normal levels and function. Our laboratory has identified a number of novel AAT alleles that we report in this manuscript. We screened more than 500,000 individuals for AATD alleles through our testing program over the past 20 years. The characterization of these alleles was accomplished by DNA sequencing, measurement of AAT plasma levels and isoelectric focusing at pH 4-5. We report 22 novel AAT alleles discovered through our screening programs, such as Zlittle rock and QOchillicothe, and review the current literature of known AAT genetic variants.

17.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G594-G608, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36256438

ABSTRACT

Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.


Subject(s)
Fatty Liver , alpha 1-Antitrypsin Deficiency , Male , Female , Humans , Mice , Animals , Mice, Inbred C57BL , Lipopolysaccharides , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin/genetics , Mice, Transgenic , Disease Models, Animal , Inflammation
18.
PLoS One ; 17(9): e0274427, 2022.
Article in English | MEDLINE | ID: mdl-36084115

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome caused by a novel coronavirus 2 (SARS-CoV-2) has infected more than 18 million people worldwide. The activation of endothelial cells is a hallmark of signs of SARS-CoV-2 infection that includes altered integrity of vessel barrier and endothelial inflammation. OBJECTIVES: Pulmonary endothelial activation is suggested to be related to the profound neutrophil elastase (NE) activity, which is necessary for sterilization of phagocytosed bacterial pathogens. However, unopposed activity of NE increases alveolocapillary permeability and extracellular matrix degradation. The uncontrolled protease activity of NE during the inflammatory phase of lung diseases might be due to the resistance of exosome associated NE to inhibition by alpha-1 antitrypsin. METHOD: 31 subjects with a diagnosis of SARS-CoV2 infection were recruited in the disease group and samples from 30 voluntaries matched for age and sex were also collected for control. RESULTS: We measured the plasma levels of exosome-associated NE in SARS-CoV-2 patients which, were positively correlated with sign of endothelial damage in those patients as determined by plasma levels of LDH. Notably, we also found strong correlation with plasma levels of alpha-1 antitrypsin and exosome-associated NE in SARS-CoV-2 patients. Using macrovascular endothelial cells, we also observed that purified NE activity is inhibited by purified alpha-1 antitrypsin while, NE associated with exosomes are resistant to inhibition and show less sensitivity to alpha-1 antitrypsin inhibitory activity, in vitro. CONCLUSIONS: Our results point out the role of exosome-associated NE in exacerbation of endothelial injury in SARS-CoV-2 infection. We have demonstrated that exosome-associated NE could be served as a new potential therapeutic target of severe systemic manifestations of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Exosomes , alpha 1-Antitrypsin Deficiency , Endothelial Cells/metabolism , Exosomes/metabolism , Humans , Leukocyte Elastase/metabolism , RNA, Viral , SARS-CoV-2 , alpha 1-Antitrypsin/metabolism
19.
Respir Res ; 23(1): 232, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36068572

ABSTRACT

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS: Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is "cross talk" between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS: AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS: The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals.


Subject(s)
Cigarette Smoking , Extracellular Vesicles , Pneumonia , Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin Deficiency , Cigarette Smoking/adverse effects , Cytokines/metabolism , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Leukocytes, Mononuclear/metabolism , Macrophage Activation , Pneumonia/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Nicotiana , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin Deficiency/genetics
SELECTION OF CITATIONS
SEARCH DETAIL