Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1842(6): 817-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24514102

ABSTRACT

Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Subject(s)
Protein Biosynthesis , Proto-Oncogene Proteins c-mdm2/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , DNA Damage/genetics , Humans , Proto-Oncogene Proteins c-mdm2/metabolism , Ribosomal Proteins/metabolism , Ribosomes/genetics , Signal Transduction , Transcriptional Activation , Tumor Suppressor Protein p53/genetics
2.
Proc Natl Acad Sci U S A ; 109(50): 20467-72, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23169665

ABSTRACT

Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synthesized ribosomal proteins are degraded by proteasomes upon inhibition of Pol I activity by actinomycin D, L5 and L11 accumulate in the ribosome-free fraction where they bind to Mdm2. This selective accumulation of free L5 and L11 is due to their mutual protection from proteasomal degradation. Furthermore, the endogenous, newly synthesized L5 and L11 continue to be imported into nucleoli even after nucleolar disruption and colocalize with Mdm2, p53, and promyelocytic leukemia protein. This suggests that the disrupted nucleoli may provide a platform for L5- and L11-dependent p53 activation, implying a role for the nucleolus in p53 activation by ribosomal biogenesis stress. These findings may have important implications with respect to understanding the pathogenesis of diseases caused by impaired ribosome biogenesis.


Subject(s)
Ribosomal Proteins/metabolism , Ribosomes/metabolism , Tumor Suppressor Protein p53/metabolism , Active Transport, Cell Nucleus , Animals , Base Sequence , Cell Line, Tumor , Cell Nucleolus/metabolism , Dactinomycin/pharmacology , Humans , Mice , Models, Biological , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proto-Oncogene Proteins c-mdm2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/genetics , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...