Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
2.
BMC Cancer ; 22(1): 1254, 2022 Dec 02.
Article En | MEDLINE | ID: mdl-36460969

The integrated stress response (ISR) facilitates cellular adaptation to unfavorable conditions by reprogramming the cellular response. ISR activation was reported in neurological disorders and solid tumors; however, the function of ISR and its role as a possible therapeutic target in hematological malignancies still remain largely unexplored. Previously, we showed that the ISR is activated in chronic myeloid leukemia (CML) cells and correlates with blastic transformation and tyrosine kinase inhibitor (TKI) resistance. Moreover, the ISR was additionally activated in response to imatinib as a type of protective internal signaling. Here, we show that ISR inhibition combined with imatinib treatment sensitized and more effectively eradicated leukemic cells both in vitro and in vivo compared to treatment with single agents. The combined treatment specifically inhibited the STAT5 and RAS/RAF/MEK/ERK pathways, which are recognized as drivers of resistance. Mechanistically, this drug combination attenuated both interacting signaling networks, leading to BCR-ABL1- and ISR-dependent STAT5 activation. Consequently, leukemia engraftment in patient-derived xenograft mice bearing CD34+ TKI-resistant CML blasts carrying PTPN11 mutation responsible for hyperactivation of the RAS/RAF/MAPK and JAK/STAT5 pathways was decreased upon double treatment. This correlated with the downregulation of genes related to the RAS/RAF/MAPK, JAK/STAT5 and stress response pathways and was associated with lower expression of STAT5-target genes regulating proliferation, viability and the stress response. Collectively, these findings highlight the effect of imatinib plus ISRIB in the eradication of leukemic cells resistant to TKIs and suggest potential clinical benefits for leukemia patients with TKI resistance related to RAS/RAF/MAPK or STAT5 signaling. We propose that personalized treatment based on the genetic selection of patients carrying mutations that cause overactivation of the targeted pathways and therefore make their sensitivity to such treatment probable should be considered as a possible future direction in leukemia treatment.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Animals , Mice , STAT5 Transcription Factor/genetics , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Front Immunol ; 13: 886431, 2022.
Article En | MEDLINE | ID: mdl-35757700

Several COVID-19 convalescents suffer from the post-acute COVID-syndrome (PACS)/long COVID, with symptoms that include fatigue, dyspnea, pulmonary fibrosis, cognitive dysfunctions or even stroke. Given the scale of the worldwide infections, the long-term recovery and the integrative health-care in the nearest future, it is critical to understand the cellular and molecular mechanisms as well as possible predictors of the longitudinal post-COVID-19 responses in convalescent individuals. The immune system and T cell alterations are proposed as drivers of post-acute COVID syndrome. However, despite the number of studies on COVID-19, many of them addressed only the severe convalescents or the short-term responses. Here, we performed longitudinal studies of mild, moderate and severe COVID-19-convalescent patients, at two time points (3 and 6 months from the infection), to assess the dynamics of T cells immune landscape, integrated with patients-reported symptoms. We show that alterations among T cell subsets exhibit different, severity- and time-dependent dynamics, that in severe convalescents result in a polarization towards an exhausted/senescent state of CD4+ and CD8+ T cells and perturbances in CD4+ Tregs. In particular, CD8+ T cells exhibit a high proportion of CD57+ terminal effector cells, together with significant decrease of naïve cell population, augmented granzyme B and IFN-γ production and unresolved inflammation 6 months after infection. Mild convalescents showed increased naïve, and decreased central memory and effector memory CD4+ Treg subsets. Patients from all severity groups can be predisposed to the long COVID symptoms, and fatigue and cognitive dysfunctions are not necessarily related to exhausted/senescent state and T cell dysfunctions, as well as unresolved inflammation that was found only in severe convalescents. In conclusion, the post-COVID-19 functional remodeling of T cells could be seen as a two-step process, leading to distinct convalescent immune states at 6 months after infection. Our data imply that attenuation of the functional polarization together with blocking granzyme B and IFN-γ in CD8+ cells might influence post-COVID alterations in severe convalescents. However, either the search for long COVID predictors or any treatment to prevent PACS and further complications is mandatory in all patients with SARS-CoV-2 infection, and not only in those suffering from severe COVID-19.


COVID-19 , CD4-Positive T-Lymphocytes , COVID-19/complications , Fatigue , Granzymes , Humans , Inflammation , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
4.
Blood Adv ; 6(6): 1879-1894, 2022 03 22.
Article En | MEDLINE | ID: mdl-35130345

Chronic and acute myeloid leukemia evade immune system surveillance and induce immunosuppression by expanding proleukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse, and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector proleukemic Tregs. Using mouse model of leukemia-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, and IL21R and included 2 distinct effector Treg (eTreg) subsets: CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive Tregs and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms.


4-1BB Ligand/immunology , Extracellular Vesicles , Leukemia, Myeloid, Acute , Animals , Extracellular Vesicles/metabolism , Immunosuppressive Agents/therapeutic use , Ki-1 Antigen/metabolism , Leukemia, Myeloid, Acute/drug therapy , Mice , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article En | MEDLINE | ID: mdl-34244439

AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.


Actins/metabolism , Cell Surface Extensions/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Pinocytosis , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Actin Cytoskeleton/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Glioblastoma/pathology , Glutamine/pharmacology , HEK293 Cells , Humans , Models, Biological , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , rac1 GTP-Binding Protein/metabolism , Axl Receptor Tyrosine Kinase
6.
Cells ; 10(3)2021 02 25.
Article En | MEDLINE | ID: mdl-33668852

The phenomenon of the reprogramming of terminally differentiated cells can be achieved by various means, like somatic cell nuclear transfer, cell fusion with a pluripotent cell, or the introduction of pluripotency genes. Here, we present the evidence that somatic cells can attain the expression of pluripotency markers after their introduction into early embryos. Mouse embryonic fibroblasts introduced between blastomeres of cleaving embryos, within two days of in vitro culture, express transcription factors specific to blastocyst lineages, including pluripotency factors. Analysis of donor tissue marker DNA has revealed that the progeny of introduced cells are found in somatic tissues of foetuses and adult chimaeras, providing evidence for cell reprogramming. Analysis of ploidy has shown that in the chimaeras, the progeny of introduced cells are either diploid or tetraploid, the latter indicating cell fusion. The presence of donor DNA in diploid cells from chimaeric embryos proved that the non-fused progeny of introduced fibroblasts persisted in chimaeras, which is evidence of reprogramming by embryonic niche. When adult somatic (cumulus) cells were introduced into early cleavage embryos, the extent of integration was limited and only cell fusion-mediated reprogramming was observed. These results show that both cell fusion and cell interactions with the embryonic niche reprogrammed somatic cells towards pluripotency.


Aging/physiology , Biomarkers/metabolism , Cellular Reprogramming , Chimera/physiology , Embryo, Mammalian/cytology , Pluripotent Stem Cells/metabolism , Animals , Blastocyst/cytology , Blastomeres/cytology , Cell Fusion , Cell Line , Cumulus Cells/cytology , Diploidy , Embryo Culture Techniques , Embryonic Development , Female , Fetus/cytology , Fluorescent Dyes/metabolism , Mice , Morula/cytology , Pluripotent Stem Cells/cytology , Pregnancy , Tetraploidy
7.
J Cell Sci ; 134(1)2021 01 08.
Article En | MEDLINE | ID: mdl-33419951

Molecular details of how endocytosis contributes to oncogenesis remain elusive. Our in silico analysis of colorectal cancer (CRC) patients revealed stage-dependent alterations in the expression of 112 endocytosis-related genes. Among them, transcription of the endosomal sorting complex required for transport (ESCRT)-I component VPS37B was decreased in the advanced stages of CRC. Expression of other ESCRT-I core subunits remained unchanged in the investigated dataset. We analyzed an independent cohort of CRC patients, which also showed reduced VPS37A mRNA and protein abundance. Transcriptomic profiling of CRC cells revealed non-redundant functions of Vps37 proteins. Knockdown of VPS37A and VPS37B triggered p21 (CDKN1A)-mediated inhibition of cell proliferation and sterile inflammatory response driven by the nuclear factor (NF)-κB transcription factor and associated with mitogen-activated protein kinase signaling. Co-silencing of VPS37C further potentiated activation of these independently induced processes. The type and magnitude of transcriptional alterations correlated with the differential ESCRT-I stability upon individual and concurrent Vps37 depletion. Our study provides novel insights into cancer cell biology by describing cellular stress responses that are associated with ESCRT-I destabilization.


Endosomal Sorting Complexes Required for Transport , Transcription Factors , Endocytosis , Endosomal Sorting Complexes Required for Transport/genetics , Humans
8.
Elife ; 92020 08 14.
Article En | MEDLINE | ID: mdl-32795391

Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.


Alternative Splicing/genetics , Autophagy/physiology , COP-Coated Vesicles/physiology , Protein Serine-Threonine Kinases/genetics , Animals , Cell Differentiation/genetics , Humans , Mice , Protein Serine-Threonine Kinases/metabolism
9.
EMBO Mol Med ; 12(2): e10812, 2020 02 07.
Article En | MEDLINE | ID: mdl-31930723

Somatic copy number alterations play a critical role in oncogenesis. Loss of chromosomal regions containing tumor suppressors can lead to collateral deletion of passenger genes. This can be exploited therapeutically if synthetic lethal partners of such passenger genes are known and represent druggable targets. Here, we report that VPS4B gene, encoding an ATPase involved in ESCRT-dependent membrane remodeling, is such a passenger gene frequently deleted in many cancer types, notably in colorectal cancer (CRC). We observed downregulation of VPS4B mRNA and protein levels from CRC patient samples. We identified VPS4A paralog as a synthetic lethal interactor for VPS4B in vitro and in mouse xenografts. Depleting both proteins profoundly altered the cellular transcriptome and induced cell death accompanied by the release of immunomodulatory molecules that mediate inflammatory and anti-tumor responses. Our results identify a pair of novel druggable targets for personalized oncology and provide a rationale to develop VPS4 inhibitors for precision therapy of VPS4B-deficient cancers.


ATPases Associated with Diverse Cellular Activities/genetics , Colorectal Neoplasms , Endosomal Sorting Complexes Required for Transport/genetics , Synthetic Lethal Mutations , Vacuolar Proton-Translocating ATPases/genetics , Animals , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Mice , Neoplasm Transplantation
10.
Eur J Immunol ; 50(4): 606-609, 2020 04.
Article En | MEDLINE | ID: mdl-31758697

Mechanisms driving immunosuppression in chronic myeloid leukemia are mostly unknown. We show that leukemic extracellular vesicles (EVs) target lymphocytes and amplify suppressive function of thymic regulatory T cells, by driving expression of Foxp3 transcription factor. This could facilitate expansion of leukemic cells outside the bone marrow, leading to blast crisis.


Extracellular Vesicles/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/physiology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Cells, Cultured , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Leukemic , Humans , Immune Tolerance , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Lymphocyte Activation , Up-Regulation
11.
J Cell Biol ; 211(1): 123-44, 2015 Oct 12.
Article En | MEDLINE | ID: mdl-26459602

Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway.


Adaptor Proteins, Signal Transducing/physiology , Endocytosis , Endosomes/metabolism , HeLa Cells , Humans , Protein Transport
12.
Oxid Med Cell Longev ; 2015: 135691, 2015.
Article En | MEDLINE | ID: mdl-26229578

We explored the effect of a new resveratrol (RVT) derivative, 3,3',4,4'-tetrahydroxy-trans-stilbene (3,3',4,4'-THS), on viability, apoptosis, proliferation, and senescence of three representative lines of ovarian cancer cells, that is, A2780, OVCAR-3, and SKOV-3, in vitro. In addition, the mechanistic aspects of 3,3',4,4'-THS activity, including cell redox homeostasis (the production of reactive oxygen species, activity of enzymatic antioxidants, and magnitude of DNA damage accumulation and repair), and the activity of caspases (3, 8, and 9) and p38 MAPK were examined. The study showed that 3,3',4,4'-THS affects cancer cell viability much more efficiently than its parent drug. This effect coincided with increased generation of reactive oxygen species, downregulated activity of superoxide dismutase and catalase, and excessive accumulation of 8-hydroxy-2'-deoxyguanosine and its insufficient repair due to decreased expression of DNA glycosylase I. Cytotoxicity elicited by 3,3',4,4'-THS was related to increased incidence of apoptosis, which was mediated by caspases 3 and 9. Moreover, 3,3',4,4'-THS inhibited cancer cell proliferation and accelerated senescence, which was accompanied by the activation of p38 MAPK. Collectively, our findings indicate that 3,3',4,4'-THS may constitute a valuable tool in the fight against ovarian malignancy and that the anticancer capabilities of this stilbene proceed in an oxidative stress-dependent mechanism.


Catechols/toxicity , DNA Damage/drug effects , Oxidative Stress/drug effects , Stilbenes/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Adult , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Catalase/metabolism , Catechols/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Glycosylases/metabolism , DNA Repair/drug effects , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/toxicity , Reactive Oxygen Species/metabolism , Resveratrol , Stilbenes/chemistry , Superoxide Dismutase/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Int J Biochem Cell Biol ; 45(9): 2087-96, 2013 Sep.
Article En | MEDLINE | ID: mdl-23871936

Senescence bystander effect refers to a phenomenon in which senescent cells elicit the development of senescence phenotype in their nearby young counterparts. In this paper we examined the mechanism of senescence bystander effect triggered by senescent human peritoneal mesothelial cells (HPMCs) in proliferating HPMCs and peritoneal fibroblasts (HPFBs). The results showed that conditioned medium (CM) derived from senescent HPMCs elicited a senescence response (growth inhibition coupled with increased expression of senescence-associated ß-galactosidase and accumulation of histone γ-H2A.X) in either early-passage HPMCs or HPFBs. Samples of CM from senescent HPMCs contained increased amounts of numerous soluble mediators of which only transforming growth factor-ß1 (TGF-ß1) was able to induce senescence phenotype in the both types of peritoneal cells, likely through an induction of reactive oxygen species (ROS) and p38 mitogen-activated protein kinase (MAPK). At the same time, senescent HPMCs released increased amounts of thrombospondin-1 (TSP-1), a major activator of TGF-ß1. Significantly, TSP-1 itself was unable to induce senescence phenotype in HPMCs or in HPFBs. The experiments employing anti-TSP-1 antibodies and specific TSP-1 blocking peptide revealed that neutralization of TSP-1 in CM prevented TGF-ß1-dependent development of senescence phenotype. Collectively, our findings indicate that senescent HPMCs exhibit senescence-promoting activity toward neighboring young cells (HPMCs and HPFBs), and this effect is, at least partly, related to TSP-1-dependent activation and further ROS- and p38 MAPK-related activity of TGF-ß1.


Bystander Effect/drug effects , Bystander Effect/physiology , Fibroblasts/cytology , Fibroblasts/metabolism , Thrombospondin 1/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/physiology , Epithelium/metabolism , Humans , Peritoneum/cytology , Peritoneum/metabolism , Reactive Oxygen Species/metabolism , Recombinant Proteins/pharmacology
...