Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Mol Metab ; 68: 101665, 2023 02.
Article En | MEDLINE | ID: mdl-36592795

OBJECTIVE: Overweight and obesity are endemic in developed countries, with a substantial negative impact on human health. Medications developed to treat obesity include agonists for the G-protein coupled receptors glucagon-like peptide-1 (GLP-1R; e.g. liraglutide), serotonin 2C (5-HT2CR; e.g, lorcaserin), and melanocortin4 (MC4R) which reduce body weight primarily by suppressing food intake. However, the mechanisms underlying the therapeutic food intake suppressive effects are still being defined and were investigated here. METHODS: We profiled PPG neurons in the nucleus of the solitary tract (PPGNTS) using single nucleus RNA sequencing (Nuc-Seq) and histochemistry. We next examined the requirement of PPGNTS neurons for obesity medication effects on food intake by virally ablating PPGNTS neurons. Finally, we assessed the effects on food intake of the combination of liraglutide and lorcaserin. RESULTS: We found that 5-HT2CRs, but not GLP-1Rs or MC4Rs, were widespread in PPGNTS clusters and that lorcaserin significantly activated PPGNTS neurons. Accordingly, ablation of PPGNTS neurons prevented the reduction of food intake by lorcaserin but not MC4R agonist melanotan-II, demonstrating the functional significance of PPGNTS 5-HT2CR expression. Finally, the combination of lorcaserin with GLP-1R agonists liraglutide or exendin-4 produced greater food intake reduction as compared to either monotherapy. CONCLUSIONS: These findings identify a necessary mechanism through which obesity medication lorcaserin produces its therapeutic benefit, namely brainstem PPGNTS neurons. Moreover, these data reveal a strategy to augment the therapeutic profile of the current frontline treatment for obesity, GLP-1R agonists, via coadministration with 5-HT2CR agonists.


Glucagon-Like Peptide 1 , Liraglutide , Humans , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Serotonin/metabolism , Appetite , Obesity/drug therapy , Obesity/metabolism , Solitary Nucleus/metabolism , Eating , Neurons/metabolism
2.
Br J Pharmacol ; 179(4): 557-570, 2022 02.
Article En | MEDLINE | ID: mdl-34323288

This review considers the similarities and differences between the physiological systems regulated by gut-derived and neuronally produced glucagon-like peptide 1 (GLP-1). It addresses the questions of whether peripheral and central GLP-1 sources constitute separate, linked or redundant systems and whether the brain GLP-1 system consists of disparate sections or is a homogenous entity. This review also explores the implications of the answers to these questions for the use of GLP-1 receptor agonists as anti-obesity drugs. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Brain/metabolism , Eating , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Obesity/drug therapy
3.
Br J Pharmacol ; 179(4): 584-599, 2022 02.
Article En | MEDLINE | ID: mdl-34185884

Here, we provide a focused review of the evidence for the roles of the vagus nerve in mediating the regulatory effects of peripherally and centrally produced GLP-1 on eating behaviour and energy balance. We particularly focus on recent studies which have used selective genetic, viral, and transcriptomic approaches to provide important insights into the anatomical and functional organisation of GLP-1-mediated gut-brain signalling pathways. A number of these studies have challenged canonical ideas of how GLP-1 acts in the periphery and the brain to regulate eating behaviour, with important implications for the development of pharmacological treatments for obesity. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Obesity/drug therapy , Signal Transduction , Vagus Nerve/metabolism
4.
Nat Metab ; 3(2): 258-273, 2021 02.
Article En | MEDLINE | ID: mdl-33589843

The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.


Central Nervous System/physiology , Glucagon-Like Peptide 1/physiology , Peripheral Nervous System/physiology , Satiety Response/physiology , Animals , Eating , Female , Gastrointestinal Tract/innervation , Gastrointestinal Tract/physiology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Proglucagon/metabolism , Receptors, Oxytocin/metabolism , Vagus Nerve/physiology
6.
Mol Metab ; 39: 101024, 2020 09.
Article En | MEDLINE | ID: mdl-32446875

OBJECTIVE: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) and arterial blood pressure (ABP) in rodents and humans. Although the activation of GLP-1 receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in particular, it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the brain source of GLP-1, to elicit these effects. METHODS: We investigated the effect of GLP-1RAs on heart rate in anaesthetized adult mice. In a separate study, we manipulated the activity of nucleus tractus solitarius (NTS) PPG neurons (PPGNTS) in awake, freely behaving transgenic Glu-Cre mice implanted with biotelemetry probes and injected with AAV-DIO-hM3Dq:mCherry or AAV-mCherry-FLEX-DTA. RESULTS: Systemic administration of the GLP-1RA Ex-4 increased resting HR in anaesthetized or conscious mice, but had no effect on ABP in conscious mice. This effect was abolished by ß-adrenoceptor blockade with atenolol, but unaffected by the muscarinic antagonist atropine. Furthermore, Ex-4-induced tachycardia persisted when PPGNTS neurons were ablated, and Ex-4 did not induce expression of the neuronal activity marker cFos in PPGNTS neurons. PPGNTS ablation or acute chemogenetic inhibition of these neurons via hM4Di receptors had no effect on resting HR. In contrast, chemogenetic activation of PPGNTS neurons increased resting HR. Furthermore, the application of GLP-1 within the subarachnoid space of the middle thoracic spinal cord, a major projection target of PPG neurons, increased HR. CONCLUSIONS: These results demonstrate that both systemic application of Ex-4 or GLP-1 and chemogenetic activation of PPGNTS neurons increases HR. Ex-4 increases the activity of cardiac sympathetic preganglionic neurons of the spinal cord without recruitment of PPGNTS neurons, and thus likely recapitulates the physiological effects of PPG neuron activation. These neurons therefore do not play a significant role in controlling resting HR and ABP but are capable of inducing tachycardia and so are likely involved in cardiovascular responses to acute stress.


Glucagon-Like Peptide-1 Receptor/agonists , Heart Rate , Neurons/metabolism , Proglucagon/biosynthesis , Solitary Nucleus/physiology , Tachycardia/etiology , Tachycardia/metabolism , Animals , Disease Models, Animal , Electrocardiography , Exenatide/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Heart Rate/drug effects , Mice , Mice, Transgenic , Neurons/drug effects , Solitary Nucleus/cytology , Spinal Cord/drug effects , Spinal Cord/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Tachycardia/diagnosis
7.
Nat Commun ; 11(1): 467, 2020 01 24.
Article En | MEDLINE | ID: mdl-31980626

The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R signaling can additionally be evoked when the receptor is allosterically modulated in the presence of LUXendin645. Using LUXendin645 and LUXendin651, we describe islet, brain and hESC-derived ß-like cell GLP1R expression patterns, reveal higher-order GLP1R organization including membrane nanodomains, and track single receptor subpopulations. We furthermore show that the LUXendin backbone can be optimized for intravital two-photon imaging by installing a red fluorophore. Thus, our super-resolution compatible labeling probes allow visualization of endogenous GLP1R, and provide insight into class B GPCR distribution and dynamics both in vitro and in vivo.


Fluorescent Dyes , Glucagon-Like Peptide-1 Receptor/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Amino Acid Sequence , Animals , Brain/metabolism , Cell Line , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glucagon-Like Peptide-1 Receptor/deficiency , Glucagon-Like Peptide-1 Receptor/genetics , HEK293 Cells , Human Embryonic Stem Cells/metabolism , Humans , Islets of Langerhans/metabolism , Mice , Mice, Knockout , Models, Molecular , Molecular Structure , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/genetics , Signal Transduction , Tissue Distribution
8.
J Cachexia Sarcopenia Muscle ; 10(4): 844-859, 2019 08.
Article En | MEDLINE | ID: mdl-31035309

BACKGROUND: Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality. Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss. We recently established that the non-psychoactive phytocannabinoid cannabigerol (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin. METHODS: An acute cachectic phenotype was induced in adult male Lister-hooded rats by 6 mg/kg (i.p.) cisplatin. In total 66 rats were randomly allocated to groups receiving vehicle only, cisplatin only, or cisplatin and 60 or 120 mg/kg CBG (po, b.i.d.). Feeding behavior, bodyweight and locomotor activity were recorded for 72 hours, at which point rats were sacrificed for post-mortem analyses. Myofibre atrophy, protein synthesis and autophagy dysregulation were assessed in skeletal muscle, plasma metabolic profiles were obtained by untargeted 1H-NMR metabonomics, and levels of endocannabinoid-like lipoamines quantified in plasma and hypothalami by targeted HPLC-MS/MS lipidomics. RESULTS: CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Y=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Y=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment. CONCLUSIONS: Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.


Cachexia/chemically induced , Cannabinoids/therapeutic use , Hypothalamus/drug effects , Magnetic Resonance Spectroscopy/methods , Animals , Cannabinoids/pharmacology , Disease Models, Animal , Humans , Male , Pilot Projects , Rats
9.
Diabetes ; 68(1): 21-33, 2019 01.
Article En | MEDLINE | ID: mdl-30279161

Centrally administered glucagon-like peptide 1 (GLP-1) supresses food intake. Here we demonstrate that GLP-1-producing (PPG) neurons in the nucleus tractus solitarii (NTS) are the predominant source of endogenous GLP-1 within the brain. Selective ablation of NTS PPG neurons by viral expression of diphtheria toxin subunit A substantially reduced active GLP-1 concentrations in brain and spinal cord. Contrary to expectations, this loss of central GLP-1 had no significant effect on the ad libitum feeding of mice, affecting neither daily chow intake nor body weight or glucose tolerance. Only after bigger challenges to homeostasis were PPG neurons necessary for food intake control. PPG-ablated mice increased food intake after a prolonged fast and after a liquid diet preload. Consistent with our ablation data, acute inhibition of hM4Di-expressing PPG neurons did not affect ad libitum feeding; however, it increased refeeding intake after fast and blocked stress-induced hypophagia. Additionally, chemogenetic PPG neuron activation through hM3Dq caused a strong acute anorectic effect. We conclude that PPG neurons are not involved in primary intake regulation but form part of a secondary satiation/satiety circuit, which is activated by both psychogenic stress and large meals. Given their hypophagic capacity, PPG neurons might be an attractive drug target in obesity treatment.


Brain/metabolism , Glucagon-Like Peptide 1/metabolism , Solitary Nucleus/metabolism , Animals , Eating/physiology , Electrophysiology , Female , Glucose Tolerance Test , Immunohistochemistry , Male , Mice , Obesity/metabolism , Proglucagon/metabolism
10.
J Comp Neurol ; 526(14): 2149-2164, 2018 10 01.
Article En | MEDLINE | ID: mdl-30019398

Glutamatergic neurons that express pre-proglucagon (PPG) and are immunopositive (+) for glucagon-like peptide-1 (i.e., GLP-1+ neurons) are located within the caudal nucleus of the solitary tract (cNTS) and medullary reticular formation in rats and mice. GLP-1 neurons give rise to an extensive central network in which GLP-1 receptor (GLP-1R) signaling suppresses food intake, attenuates rewarding, increases avoidance, and stimulates stress responses, partly via GLP-1R signaling within the cNTS. In mice, noradrenergic (A2) cNTS neurons express GLP-1R, whereas PPG neurons do not. In this study, confocal microscopy in rats confirmed that prolactin-releasing peptide (PrRP)+ A2 neurons are closely apposed by GLP-1+ axonal varicosities. Surprisingly, GLP-1+ appositions were also observed on dendrites of PPG/GLP-1+ neurons in both species, and electron microscopy in rats revealed that GLP-1+ boutons form asymmetric synaptic contacts with GLP-1+ dendrites. However, RNAscope confirmed that rat GLP-1 neurons do not express GLP-1R mRNA. Similarly, Ca2+ imaging of somatic and dendritic responses in mouse ex vivo slices confirmed that PPG neurons do not respond directly to GLP-1, and a mouse crossbreeding strategy revealed that <1% of PPG neurons co-express GLP-1R. Collectively, these data suggest that GLP-1R signaling pathways modulate the activity of PrRP+ A2 neurons, and also reveal a local "feed-forward" synaptic network among GLP-1 neurons that apparently does not use GLP-1R signaling. This local GLP-1 network may instead use glutamatergic signaling to facilitate dynamic and potentially selective recruitment of GLP-1 neural populations that shape behavioral and physiological responses to internal and external challenges.


Glucagon-Like Peptide 1/physiology , Nerve Net/physiology , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Synapses/physiology , Animals , Female , Glucagon-Like Peptide-1 Receptor/biosynthesis , Glucagon-Like Peptide-1 Receptor/genetics , Glutamate Decarboxylase , Male , Mice , Mice, Transgenic , Nerve Net/cytology , Proglucagon/metabolism , Prolactin-Releasing Hormone/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Solitary Nucleus/ultrastructure , Synapses/ultrastructure
11.
Behav Pharmacol ; 28(4): 280-284, 2017 06.
Article En | MEDLINE | ID: mdl-28125508

Nonpsychoactive phytocannabinoids (pCBs) from Cannabis sativa may represent novel therapeutic options for cachexia because of their pleiotropic pharmacological activities, including appetite stimulation. We have recently shown that purified cannabigerol (CBG) is a novel appetite stimulant in rats. As standardized extracts from Cannabis chemotypes dominant in one pCB [botanical drug substances (BDSs)] often show greater efficacy and/or potency than purified pCBs, we investigated the effects of a CBG-rich BDS, devoid of psychoactive [INCREMENT]-tetrahydrocannabinol, on feeding behaviour. Following a 2 h prefeed satiation procedure, 16 male Lister-hooded rats were administered CBG-BDS (at 30-240 mg/kg) or vehicle. Food intake, meal pattern microstructure and locomotor activity were recorded over 2 h. The total food intake was increased by 120 and 240 mg/kg CBG-BDS (1.53 and 1.36 g, respectively, vs. 0.56 g in vehicle-treated animals). Latency to feeding onset was dose dependently decreased at all doses, and 120 and 240 mg/kg doses increased both the number of meals consumed and the cumulative size of the first two meals. No significant effect was observed on ambulatory activity or rearing behaviour. CBG-BDS is a novel appetite stimulant, which may have greater potency than purified CBG, despite the absence of [INCREMENT]-tetrahydrocannabinol in the extract.


Cannabinoids/pharmacology , Cannabis/chemistry , Hyperphagia/chemically induced , Plant Extracts/pharmacology , Animals , Appetite Stimulants/administration & dosage , Appetite Stimulants/pharmacology , Cachexia/drug therapy , Cannabinoids/administration & dosage , Dose-Response Relationship, Drug , Feeding Behavior/drug effects , Locomotion , Male , Plant Extracts/administration & dosage , Rats
12.
Psychopharmacology (Berl) ; 233(19-20): 3603-13, 2016 Oct.
Article En | MEDLINE | ID: mdl-27503475

RATIONALE: The appetite-stimulating properties of cannabis are well documented and have been predominantly attributed to the hyperphagic activity of the psychoactive phytocannabinoid, ∆(9)-tetrahydrocannabinol (∆(9)-THC). However, we have previously shown that a cannabis extract devoid of ∆(9)-THC still stimulates appetite, indicating that other phytocannabinoids also elicit hyperphagia. One possible candidate is the non-psychoactive phytocannabinoid cannabigerol (CBG), which has affinity for several molecular targets with known involvement in the regulation of feeding behaviour. OBJECTIVES: The objective of the study was to assess the effects of CBG on food intake and feeding pattern microstructure. METHODS: Male Lister hooded rats were administered CBG (30-120 mg/kg, per ora (p.o.)) or placebo and assessed in open field, static beam and grip strength tests to determine a neuromotor tolerability profile for this cannabinoid. Subsequently, CBG (at 30-240 mg/kg, p.o.) or placebo was administered to a further group of pre-satiated rats, and hourly intake and meal pattern data were recorded over 2 h. RESULTS: CBG produced no adverse effects on any parameter in the neuromotor tolerability test battery. In the feeding assay, 120-240 mg/kg CBG more than doubled total food intake and increased the number of meals consumed, and at 240 mg/kg reduced latency to feed. However, the sizes or durations of individual meals were not significantly increased. CONCLUSIONS: Here, we demonstrate for the first time that CBG elicits hyperphagia, by reducing latency to feed and increasing meal frequency, without producing negative neuromotor side effects. Investigation of the therapeutic potential of CBG for conditions such as cachexia and other disorders of eating and body weight regulation is thus warranted.


Appetite Stimulants/pharmacology , Appetite/drug effects , Behavior, Animal/drug effects , Cannabinoids/pharmacology , Eating/drug effects , Animals , Cannabis , Feeding Behavior/drug effects , Hyperphagia , Male , Rats , Satiation
13.
Psychopharmacology (Berl) ; 233(2): 243-54, 2016 Jan.
Article En | MEDLINE | ID: mdl-26439367

RATIONALE: Anticipatory nausea (AN) is a poorly controlled side effect experienced by chemotherapy patients. Currently, pharmacotherapy is restricted to benzodiazepine anxiolytics, which have limited efficacy, have significant sedative effects and induce dependency. The non-psychoactive phytocannabinoid, cannabidiolic acid (CBDA), has shown considerable efficacy in pre-clinical AN models, however determination of its neuromotor tolerability profile is crucial to justify clinical investigation. Provisional evidence for appetite-stimulating properties also requires detailed investigation. OBJECTIVES: This study aims to assess the tolerability of CBDA in locomotor activity, motor coordination and muscular strength tests, and additionally for ability to modulate feeding behaviours. METHODS: Male Lister Hooded rats administered CBDA (0.05-5 mg/kg; p.o.) were assessed in habituated open field (for locomotor activity), static beam and grip strength tests. A further study investigated whether these CBDA doses modulated normal feeding behaviour. Finally, evidence of anxiolytic-like effects in the habituated open field prompted testing of 5 mg/kg CBDA for anxiolytic-like activity in unhabituated open field, light/dark box and novelty-suppressed feeding (NSF) tests. RESULTS: CBDA had no adverse effects upon performance in any neuromotor tolerability test, however anxiolytic-like behaviour was observed in the habituated open field. Normal feeding behaviours were unaffected by any dose. CBDA (5 mg/kg) abolished the increased feeding latency in the NSF test induced by the 5-HT1AR antagonist, WAY-100,635, indicative of anxiolytic-like effects, but had no effect on anxiety-like behaviour in the novel open field or light/dark box. CONCLUSIONS: CBDA is very well tolerated and devoid of the sedative side effect profile of benzodiazepines, justifying its clinical investigation as a novel AN treatment.


Behavior, Animal/drug effects , Cannabinoids/pharmacology , Nausea/prevention & control , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/prevention & control , Anxiety/psychology , Cannabinoids/adverse effects , Dose-Response Relationship, Drug , Feeding Behavior/drug effects , Hand Strength , Male , Motor Activity/drug effects , Muscle Strength/drug effects , Nausea/psychology , Psychomotor Performance/drug effects , Rats , Receptor, Serotonin, 5-HT1A/drug effects , Serotonin 5-HT1 Receptor Antagonists/pharmacology
14.
J Psychopharmacol ; 27(1): 98-108, 2013 Jan.
Article En | MEDLINE | ID: mdl-23076833

Harmine is a ß-carboline alkaloid and major component of ayahuasca, a traditional South American psychoactive tea with anecdotal efficacy for treatment of cocaine dependence. Harmine is an inhibitor of monoamine oxidase A (MAO-A) and interacts in vitro with several pharmacological targets which modulate dopamine (DA) neurotransmission. In vivo studies have demonstrated dopaminergic effects of harmine, attributed to monoamine oxidase inhibitor (MAOI) activity, however none have directly demonstrated a pharmacological mechanism. This study investigated the acute effects, and pharmacological mechanism(s), of harmine on electrically evoked DA efflux parameters in the nucleus accumbens both in the absence and presence of cocaine. Fast cyclic voltammetry in rat brain slices was used to measure electrically evoked DA efflux in accumbens core and shell. Harmine (300 nM) significantly augmented DA efflux (148±8% of baseline) in the accumbens shell. Cocaine augmented efflux in shell additive to harmine (260±35%). Harmine had no effect on efflux in the accumbens core or on reuptake in either sub-region. The effect of harmine in the shell was attenuated by the 5-HT(2A/2C) antagonist ketanserin. The MAOI moclobemide (10 µM) had no effect on DA efflux. These data suggest that harmine augments DA efflux via a novel, shell-specific, presynaptic 5-HT(2A) receptor-dependent mechanism, independent of MAOI activity. A DA-releasing 'agonist therapy' mechanism may thus contribute to the putative therapeutic efficacy of ayahuasca for cocaine dependence.


Dopamine/metabolism , Harmine/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cocaine/pharmacology , Cocaine-Related Disorders/drug therapy , Cocaine-Related Disorders/metabolism , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Ketanserin/pharmacology , Male , Moclobemide/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/pharmacology
15.
Prog Neuropsychopharmacol Biol Psychiatry ; 39(2): 263-72, 2012 Dec 03.
Article En | MEDLINE | ID: mdl-22691716

Ayahuasca is a hallucinogenic botanical mixture originating in the Amazon area where it is used ritually, but is now being taken globally. The 2 main constituents of ayahuasca are N,N-dimethyltryptamine (DMT), a hallucinogen, and harmine, a monoamine oxidase inhibitor (MAOI) which attenuates the breakdown of DMT, which would otherwise be broken down very quickly after oral consumption. Recent developments in ayahuasca use include the sale of these compounds on the internet and the substitution of related botanical (anahuasca) or synthetic (pharmahuasca) compounds to achieve the same desired hallucinogenic effects. One intriguing result of ayahuasca use appears to be improved mental health and a reduction in recidivism to alternate (alcohol, cocaine) drug use. In this review we discuss the pharmacology of ayahuasca, with a focus on harmine, and suggest pharmacological mechanisms for the putative reduction in recidivism to alcohol and cocaine misuse. These pharmacological mechanisms include MAOI, effects at 5-HT(2A) and imidazoline receptors and inhibition of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and the dopamine transporter. We also speculate on the therapeutic potential of harmine in other CNS conditions.


Alcoholism/prevention & control , Cocaine-Related Disorders/prevention & control , Harmine/pharmacology , Harmine/therapeutic use , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Alcoholism/drug therapy , Animals , Banisteriopsis/chemistry , Cocaine-Related Disorders/drug therapy , Harmine/adverse effects , Harmine/pharmacokinetics , Humans , Monoamine Oxidase Inhibitors/adverse effects , Monoamine Oxidase Inhibitors/pharmacokinetics , N,N-Dimethyltryptamine/pharmacology , Secondary Prevention
16.
Proc Natl Acad Sci U S A ; 106(12): 4894-9, 2009 Mar 24.
Article En | MEDLINE | ID: mdl-19261850

Midbrain dopamine neurons play central roles in reward processing. It is widely assumed that all dopamine neurons encode the same information. Some evidence, however, suggests functional differences between subgroups of dopamine neurons, particularly with respect to processing nonrewarding, aversive stimuli. To directly test this possibility, we recorded from and juxtacellularly labeled individual ventral tegmental area (VTA) dopamine neurons in anesthetized rats so that we could link precise anatomical position and neurochemical identity with coding for noxious stimuli. Here, we show that dopamine neurons in the dorsal VTA are inhibited by noxious footshocks, consistent with their role in reward processing. In contrast, we find that dopamine neurons in the ventral VTA are phasically excited by footshocks. This observation can explain a number of previously confusing findings that suggested a role for dopamine in processing both rewarding and aversive events. Taken together, our results indicate that there are 2 functionally and anatomically distinct VTA dopamine systems.


Dopamine/metabolism , Neurons/physiology , Ventral Tegmental Area/physiology , Action Potentials/physiology , Animals , Electric Stimulation , Electrophysiological Phenomena , Neural Inhibition/physiology , Rats , Rats, Sprague-Dawley
...