Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38001646

ABSTRACT

The Surgical Complexity Score (SCS) has been widely used to describe the surgical effort during advanced stage epithelial ovarian cancer (EOC) cytoreduction. Referring to a variety of multi-visceral resections, it best combines the numbers with the complexity of the sub-procedures. Nevertheless, not all potential surgical procedures are described by this score. Lately, the European Society for Gynaecological Oncology (ESGO) has established standard outcome quality indicators pertinent to achieving complete cytoreduction (CC0). There is a need to define what weight all these surgical sub-procedures comprising CC0 would be given. Prospectively collected data from 560 surgically cytoreduced advanced stage EOC patients were analysed at a UK tertiary referral centre.We adapted the structured ESGO ovarian cancer report template. We employed the eXtreme Gradient Boosting (XGBoost) algorithm to model a long list of surgical sub-procedures. We applied the Shapley Additive explanations (SHAP) framework to provide global (cohort) explainability. We used Cox regression for survival analysis and constructed Kaplan-Meier curves. The XGBoost model predicted CC0 with an acceptable accuracy (area under curve [AUC] = 0.70; 95% confidence interval [CI] = 0.63-0.76). Visual quantification of the feature importance for the prediction of CC0 identified upper abdominal peritonectomy (UAP) as the most important feature, followed by regional lymphadenectomies. The UAP best correlated with bladder peritonectomy and diaphragmatic stripping (Pearson's correlations > 0.5). Clear inflection points were shown by pelvic and para-aortic lymph node dissection and ileocecal resection/right hemicolectomy, which increased the probability for CC0. When UAP was solely added to a composite model comprising of engineered features, it substantially enhanced its predictive value (AUC = 0.80, CI = 0.75-0.84). The UAP was predictive of poorer progression-free survival (HR = 1.76, CI 1.14-2.70, P: 0.01) but not overall survival (HR = 1.06, CI 0.56-1.99, P: 0.86). The SCS did not have significant survival impact. Machine Learning allows for operational feature selection by weighting the relative importance of those surgical sub-procedures that appear to be more predictive of CC0. Our study identifies UAP as the most important procedural predictor of CC0 in surgically cytoreduced advanced-stage EOC women. The classification model presented here can potentially be trained with a larger number of samples to generate a robust digital surgical reference in high output tertiary centres. The upper abdominal quadrants should be thoroughly inspected to ensure that CC0 is achievable.

2.
Cancers (Basel) ; 15(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36765924

ABSTRACT

BACKGROUND: The Peritoneal Carcinomatosis Index (PCI) and the Intra-operative Mapping for Ovarian Cancer (IMO), to a lesser extent, have been universally validated in advanced-stage epithelial ovarian cancer (EOC) to describe the extent of peritoneal dissemination and are proven to be powerful predictors of the surgical outcome with an added sensitivity of assessment at laparotomy of around 70%. This leaves room for improvement because the two-dimensional anatomic scoring model fails to reflect the patient's real anatomy, as seen by a surgeon. We hypothesized that tumor dissemination in specific anatomic locations can be more predictive of complete cytoreduction (CC0) and survival than PCI and IMO tools in EOC patients. (2) Methods: We analyzed prospectively data collected from 508 patients with FIGO-stage IIIB-IVB EOC who underwent cytoreductive surgery between January 2014 and December 2019 at a UK tertiary center. We adapted the structured ESGO ovarian cancer report to provide detailed information on the patterns of tumor dissemination (cancer anatomic fingerprints). We employed the extreme gradient boost (XGBoost) to model only the variables referring to the EOC disseminated patterns, to create an intra-operative score and judge the predictive power of the score alone for complete cytoreduction (CC0). Receiver operating characteristic (ROC) curves were then used for performance comparison between the new score and the existing PCI and IMO tools. We applied the Shapley additive explanations (SHAP) framework to support the feature selection of the narrated cancer fingerprints and provide global and local explainability. Survival analysis was performed using Kaplan-Meier curves and Cox regression. (3) Results: An intra-operative disease score was developed based on specific weights assigned to the cancer anatomic fingerprints. The scores range from 0 to 24. The XGBoost predicted CC0 resection (area under curve (AUC) = 0.88 CI = 0.854-0.913) with high accuracy. Organ-specific dissemination on the small bowel mesentery, large bowel serosa, and diaphragmatic peritoneum were the most crucial features globally. When added to the composite model, the novel score slightly enhanced its predictive value (AUC = 0.91, CI = 0.849-0.963). We identified a "turning point", ≤5, that increased the probability of CC0. Using conventional logistic regression, the new score was superior to the PCI and IMO scores for the prediction of CC0 (AUC = 0.81 vs. 0.73 and 0.67, respectively). In multivariate Cox analysis, a 1-point increase in the new intra-operative score was associated with poorer progression-free (HR: 1.06; 95% CI: 1.03-1.09, p < 0.005) and overall survival (HR: 1.04; 95% CI: 1.01-1.07), by 4% and 6%, respectively. (4) Conclusions: The presence of cancer disseminated in specific anatomical sites, including small bowel mesentery, large bowel serosa, and diaphragmatic peritoneum, can be more predictive of CC0 and survival than the entire PCI and IMO scores. Early intra-operative assessment of these areas only may reveal whether CC0 is achievable. In contrast to the PCI and IMO scores, the novel score remains predictive of adverse survival outcomes.

3.
Cancers (Basel) ; 16(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38201503

ABSTRACT

Patients with ovarian cancer (OC) often experience anxiety, depression and fear of progression (FOP); however, it is unclear whether surgical complexity has a role to play. We investigated the prevalence of anxiety, depression and FOP at 12 months post-cytoreductive surgery and investigated associations with surgical complexity, patient (age, ethnicity, performance status, BMI) and tumour (stage, disease load) factors. One hundred and forty-one patients with FIGO Stage III-IV OC, who did not have disease progression at 12 months post-surgery, completed the Hospital Anxiety and Depression Scale and FOP short-form questionnaire. Patients underwent surgery with low (40.4%), intermediate (31.2%) and high (28.4%) surgical complexity scores. At 12 months post-surgery, 99 of 141 (70%) patients with advanced OC undergoing surgery experienced clinically significant anxiety, 21 of 141 (14.9%) patients experienced moderate to severe depression and 37 of 140 (26.4%) experienced dysfunctional FOP. No associations were identified between the three different surgical complexity groups with regards to anxiety, depression or FOP scores. Unsurprisingly, given the natural history of the disease, most patients with OC suffer from anxiety, depression and fear of progression after completion of first-line cancer treatment. Surgical complexity at the time of surgery is not associated with a deleterious impact on anxiety, depression or FOP for patients with OC. Patients with OC experience a profound mental health impact and should be offered mental health support throughout their cancer journey.

4.
Diagnostics (Basel) ; 14(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38201403

ABSTRACT

There is no well-defined threshold for intra-operative blood transfusion (BT) in advanced epithelial ovarian cancer (EOC) surgery. To address this, we devised a Machine Learning (ML)-driven prediction algorithm aimed at prompting and elucidating a communication alert for BT based on anticipated peri-operative events independent of existing BT policies. We analyzed data from 403 EOC patients who underwent cytoreductive surgery between 2014 and 2019. The estimated blood volume (EBV), calculated using the formula EBV = weight × 80, served for setting a 10% EBV threshold for individual intervention. Based on known estimated blood loss (EBL), we identified two distinct groups. The Receiver operating characteristic (ROC) curves revealed satisfactory results for predicting events above the established threshold (AUC 0.823, 95% CI 0.76-0.88). Operative time (OT) was the most significant factor influencing predictions. Intra-operative blood loss exceeding 10% EBV was associated with OT > 250 min, primary surgery, serous histology, performance status 0, R2 resection and surgical complexity score > 4. Certain sub-procedures including large bowel resection, stoma formation, ileocecal resection/right hemicolectomy, mesenteric resection, bladder and upper abdominal peritonectomy demonstrated clear associations with an elevated interventional risk. Our findings emphasize the importance of obtaining a rough estimate of OT in advance for precise prediction of blood requirements.

5.
Curr Oncol ; 29(12): 9088-9104, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36547125

ABSTRACT

(1) Background: Length of stay (LOS) has been suggested as a marker of the effectiveness of short-term care. Artificial Intelligence (AI) technologies could help monitor hospital stays. We developed an AI-based novel predictive LOS score for advanced-stage high-grade serous ovarian cancer (HGSOC) patients following cytoreductive surgery and refined factors significantly affecting LOS. (2) Methods: Machine learning and deep learning methods using artificial neural networks (ANN) were used together with conventional logistic regression to predict continuous and binary LOS outcomes for HGSOC patients. The models were evaluated in a post-hoc internal validation set and a Graphical User Interface (GUI) was developed to demonstrate the clinical feasibility of sophisticated LOS predictions. (3) Results: For binary LOS predictions at differential time points, the accuracy ranged between 70-98%. Feature selection identified surgical complexity, pre-surgery albumin, blood loss, operative time, bowel resection with stoma formation, and severe postoperative complications (CD3-5) as independent LOS predictors. For the GUI numerical LOS score, the ANN model was a good estimator for the standard deviation of the LOS distribution by ± two days. (4) Conclusions: We demonstrated the development and application of both quantitative and qualitative AI models to predict LOS in advanced-stage EOC patients following their cytoreduction. Accurate identification of potentially modifiable factors delaying hospital discharge can further inform services performing root cause analysis of LOS.


Subject(s)
Artificial Intelligence , Ovarian Neoplasms , Humans , Female , Cytoreduction Surgical Procedures/methods , Length of Stay , Carcinoma, Ovarian Epithelial/surgery , Ovarian Neoplasms/surgery
6.
Cancers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36139523

ABSTRACT

We investigated URS and impact on survival in whole patient cohorts with AOC treated within gynaecological cancer centres that participated in the previously presented SOCQER 2 study. National cancer registry datasets were used to identify FIGO Stage 3,4 and unknown stage patients from 11 cancer centres that had previously participated in the SOCQER2 study. Patient outcomes' association with surgical ethos were evaluated using logistic regression and Cox proportional hazards. Centres were classified into three groups based on their surgical complexity scores (SCS); those practicing mainly low complexity, (5/11 centres with >70% low SCS procedures, 759 patients), mainly intermediate (3/11, 35−50% low SCS, 356 patients), or mainly high complexity surgery (3/11, >35% high SCS, 356 patients). Surgery rates were 43.2% vs. 58.4% vs. 60.9%. across mainly low, intermediate and high SCS centres, respectively, p < 0.001. Combined surgery and chemotherapy rates were 39.2% vs. 51.8% vs. 38.3% p < 0.000 across mainly low, intermediate and high complexity groups, respectively. Median survival was 23.1 (95% CI 19.0 to 27.2) vs. 22.0 (95% CI 17.6 to 26.3) vs. 17.9 months (95% CI 15.7 to 20.1), p = 0.043 in mainly high SCS, intermediate, and low SCS centres, respectively. In an age and deprivation adjusted model, compared to patients in the high SCS centres, patients in the low SCS group had an HR of 1.21 (95% CI 1.03 to 1.40) for death. Mainly high/intermediate SCS centres have significantly higher surgery rates and better survival at a population level. Centres that practice mainly low complexity surgery should change practice. This study provides support for the utilization of URS for patients with advanced OC.

7.
Cancers (Basel) ; 14(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884506

ABSTRACT

(1) Background: Surgical cytoreduction for epithelial ovarian cancer (EOC) is a complex procedure. Encompassed within the performance skills to achieve surgical precision, intra-operative surgical decision-making remains a core feature. The use of eXplainable Artificial Intelligence (XAI) could potentially interpret the influence of human factors on the surgical effort for the cytoreductive outcome in question; (2) Methods: The retrospective cohort study evaluated 560 consecutive EOC patients who underwent cytoreductive surgery between January 2014 and December 2019 in a single public institution. The eXtreme Gradient Boosting (XGBoost) and Deep Neural Network (DNN) algorithms were employed to develop the predictive model, including patient- and operation-specific features, and novel features reflecting human factors in surgical heuristics. The precision, recall, F1 score, and area under curve (AUC) were compared between both training algorithms. The SHapley Additive exPlanations (SHAP) framework was used to provide global and local explainability for the predictive model; (3) Results: A surgical complexity score (SCS) cut-off value of five was calculated using a Receiver Operator Characteristic (ROC) curve, above which the probability of incomplete cytoreduction was more likely (area under the curve [AUC] = 0.644; 95% confidence interval [CI] = 0.598−0.69; sensitivity and specificity 34.1%, 86.5%, respectively; p = 0.000). The XGBoost outperformed the DNN assessment for the prediction of the above threshold surgical effort outcome (AUC = 0.77; 95% [CI] 0.69−0.85; p < 0.05 vs. AUC 0.739; 95% [CI] 0.655−0.823; p < 0.95). We identified "turning points" that demonstrated a clear preference towards above the given cut-off level of surgical effort; in consultant surgeons with <12 years of experience, age <53 years old, who, when attempting primary cytoreductive surgery, recorded the presence of ascites, an Intraoperative Mapping of Ovarian Cancer score >4, and a Peritoneal Carcinomatosis Index >7, in a surgical environment with the optimization of infrastructural support. (4) Conclusions: Using XAI, we explain how intra-operative decisions may consider human factors during EOC cytoreduction alongside factual knowledge, to maximize the magnitude of the selected trade-off in effort. XAI techniques are critical for a better understanding of Artificial Intelligence frameworks, and to enhance their incorporation in medical applications.

8.
BJOG ; 129(7): 1122-1132, 2022 06.
Article in English | MEDLINE | ID: mdl-34865316

ABSTRACT

OBJECTIVE: To investigate quality of life (QoL) and association with surgical complexity and disease burden after surgical resection for advanced ovarian cancer in centres with variation in surgical approach. DESIGN: Prospective multicentre observational study. SETTING: Gynaecological cancer surgery centres in the UK, Kolkata, India, and Melbourne, Australia. SAMPLE: Patients undergoing surgical resection (with low, intermediate or high surgical complexity score, SCS) for late-stage ovarian cancer. MAIN OUTCOME MEASURES: Primary: change in global score on the European Organisation for Research and Treatment of Cancer (EORTC) core quality-of-life questionnaire (QLQ-C30). Secondary: EORTC ovarian cancer module (OV28), progression-free survival. RESULTS: Patients' preoperative disease burden and SCS varied between centres, confirming differences in surgical ethos. QoL response rates were 90% up to 18 months. Mean change from the pre-surgical baseline in the EORTC QLQ-C30 was 3.4 (SD 1.8, n = 88) in the low, 4.0 (SD 2.1, n = 55) in the intermediate and 4.3 (SD 2.1, n = 52) in the high-SCS group after 6 weeks (p = 0.048), and 4.3 (SD 2.1, n = 51), 5.1 (SD 2.2, n = 41) and 5.1 (SD 2.2, n = 35), respectively, after 12 months (p = 0.133). In a repeated-measures model, there were no clinically or statistically meaningful differences in EORTC QLQ-C30 global scores between the three SCS groups (p = 0.840), but there was a small statistically significant improvement in all groups over time (p < 0.001). The high-SCS group experienced small to moderate decreases in physical (p = 0.004), role (p = 0.016) and emotional (p = 0.001) function at 6 weeks post-surgery, which resolved by 6-12 months. CONCLUSIONS: The global QoL of patients undergoing low-, intermediate- and high-SCS surgery improved at 12 months after surgery and was no worse in patients undergoing extensive surgery. TWEETABLE ABSTRACT: Compared with surgery of lower complexity, extensive surgery does not result in poorer quality of life in patients with advanced ovarian cancer.


Subject(s)
Ovarian Neoplasms , Quality of Life , Carcinoma, Ovarian Epithelial/surgery , Cohort Studies , Cost of Illness , Cytoreduction Surgical Procedures , Female , Humans , Ovarian Neoplasms/surgery , Prospective Studies , Surveys and Questionnaires
9.
Cancer Control ; 28: 10732748211044678, 2021.
Article in English | MEDLINE | ID: mdl-34693730

ABSTRACT

INTRODUCTION: Accurate prediction of patient prognosis can be especially useful for the selection of best treatment protocols. Machine Learning can serve this purpose by making predictions based upon generalizable clinical patterns embedded within learning datasets. We designed a study to support the feature selection for the 2-year prognostic period and compared the performance of several Machine Learning prediction algorithms for accurate 2-year prognosis estimation in advanced-stage high grade serous ovarian cancer (HGSOC) patients. METHODS: The prognosis estimation was formulated as a binary classification problem. Dataset was split into training and test cohorts with repeated random sampling until there was no significant difference (p = 0.20) between the two cohorts. A ten-fold cross-validation was applied. Various state-of-the-art supervised classifiers were used. For feature selection, in addition to the exhaustive search for the best combination of features, we used the-chi square test of independence and the MRMR method. RESULTS: Two hundred nine patients were identified. The model's mean prediction accuracy reached 73%. We demonstrated that Support-Vector-Machine and Ensemble Subspace Discriminant algorithms outperformed Logistic Regression in accuracy indices. The probability of achieving a cancer-free state was maximised with a combination of primary cytoreduction, good performance status and maximal surgical effort (AUC 0.63). Standard chemotherapy, performance status, tumour load and residual disease were consistently predictive of the mid-term overall survival (AUC 0.63-0.66). The model recall and precision were greater than 80%. CONCLUSION: Machine Learning appears to be promising for accurate prognosis estimation. Appropriate feature selection is required when building an HGSOC model for 2-year prognosis prediction. We provide evidence as to what combination of prognosticators leads to the largest impact on the HGSOC 2-year prognosis.


Subject(s)
Cystadenocarcinoma, Serous/mortality , Machine Learning , Ovarian Neoplasms/mortality , Adult , Age Factors , Aged , Aged, 80 and over , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/therapy , Female , Humans , Logistic Models , Middle Aged , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Patient Acuity , Prognosis , Prospective Studies , Support Vector Machine
10.
J Clin Med ; 11(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35011828

ABSTRACT

Achieving complete surgical cytoreduction in advanced stage high grade serous ovarian cancer (HGSOC) patients warrants an availability of Critical Care Unit (CCU) beds. Machine Learning (ML) could be helpful in monitoring CCU admissions to improve standards of care. We aimed to improve the accuracy of predicting CCU admission in HGSOC patients by ML algorithms and developed an ML-based predictive score. A cohort of 291 advanced stage HGSOC patients with fully curated data was selected. Several linear and non-linear distances, and quadratic discriminant ML methods, were employed to derive prediction information for CCU admission. When all the variables were included in the model, the prediction accuracies were higher for linear discriminant (0.90) and quadratic discriminant (0.93) methods compared with conventional logistic regression (0.84). Feature selection identified pre-treatment albumin, surgical complexity score, estimated blood loss, operative time, and bowel resection with stoma as the most significant prediction features. The real-time prediction accuracy of the Graphical User Interface CCU calculator reached 95%. Limited, potentially modifiable, mostly intra-operative factors contributing to CCU admission were identified and suggest areas for targeted interventions. The accurate quantification of CCU admission patterns is critical information when counseling patients about peri-operative risks related to their cytoreductive surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...