Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Epigenomics ; : 1-14, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093129

ABSTRACT

DNA methylation (DNAm)-based deconvolution estimates contain relative data, forming a composition, that standard methods (testing directly on cell proportions) are ill-suited to handle. In this study we examined the performance of an alternative method, analysis of compositions of microbiomes (ANCOM), for the analysis of DNAm-based deconvolution estimates. We performed two different simulation studies comparing ANCOM to a standard approach (two sample t-test performed directly on cell proportions) and analyzed a real-world data from the Women's Health Initiative to evaluate the applicability of ANCOM to DNAm-based deconvolution estimates. Our findings indicate that ANCOM can effectively account for the compositional nature of DNAm-based deconvolution estimates. ANCOM adequately controls the false discovery rate while maintaining statistical power comparable to that of standard methods.


DNA methylation (DNAm)-based deconvolution provides highly accurate estimates of the proportion of each cell type in a mixed-cell type biological sample (e.g., whole-blood). These estimates can be used for examining the association between cell type proportions and biological or clinical end points; for example, comparing the estimated neutrophil proportion in whole blood between smokers and non-smokers. Cell proportion data has unique features which present challenges for traditional and widely used statistical methods. In response to this issue, our work presents two simulation studies and a real-world analysis that benchmark the performance of current standard statistical methods against an alternative method called analysis composition of microbes (ANCOM), which was originally developed for the analysis of microbiome data. In our real-world analysis we used DNAm data collected from Women's Health Initiative Long Life Study I and compared the results of each method against a gold-standard that is typically not available for these analyses. In each of our simulation studies, ANCOM was able to detect true differences in cell proportions between the groups being compared but had a much lower rate of false discovery compared with the standard statistical methods. Our real-world analysis demonstrated similar findings. Overall, our study highlights the potential of ANCOM as a powerful and robust method for analyzing DNAm-derived deconvolution estimates when the interest is comparisons of cell type proportions and biological or clinical end points. ANCOM's ability to minimize false discovery while maintaining robust statistical power positions it as a valuable addition to the epigenomic analysis toolkit.

3.
Epigenomics ; : 1-9, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38869472

ABSTRACT

Aim: This study addresses the challenge of predicting the response of head and neck squamous cell carcinoma (HNSCC) patients to immunotherapy. Methods: Using DNA methylation cytometry, we analyzed the immune profiles of six HNSCC patients who showed a positive response to immunotherapy over a year without disease progression. Results: There was an initial increase in CD8 T memory cells and natural killer cells during the first four cycles of immunotherapy, which then returned to baseline levels after a year. Baseline CD8 T cell levels were lower in HNSCC immunotherapy responders but became similar to those in healthy subjects after immunotherapy. Conclusion: These findings suggest that monitoring fluctuations in immune profiles could potentially identify biomarkers for immunotherapy response in HNSCC patients.


[Box: see text].

4.
Article in English | MEDLINE | ID: mdl-38748926

ABSTRACT

OBJECTIVE: There are conflicting data on whether fetoscopic laser photocoagulation of placental anastomoses (FLP) for treating twin-to-twin transfusion syndrome (TTTS) is associated with lower rates of overall survival. The objective of this study is to characterize survival and other associated morbidity after FLP across gestational ages of FLP. METHODS: This is a secondary analysis of prospectively collected data on patients with monochorionic-diamniotic twins that had FLP for TTTS at two centers between 2011 and 2022. Patients were divided into gestational age epochs for FLP before 18 wks, 18 0/7 - 19 6/7 wks, 20 0/7 - 21 6/7 wks, 22 0/7 - 23 6/7 wks, 24 0/7 - 25 6/7 wks and after 26 wks. Demographic characteristics, sonographic characteristics of TTTS and operative characteristics were compared across the gestational age epochs. Outcomes including overall survival, preterm delivery, preterm prelabor rupture of membranes (PPROM), intrauterine fetal demise (IUFD) and neonatal demise (NND) were also compared across gestational age epochs. Multivariate analysis was performed by fitting logistic regression models for these outcomes. Kaplan-Mejer curves were constructed to compare the interval from PPROM to delivery for each gestational age epoch. RESULTS: There were 768 patients that met inclusion criteria. The dual survival rate was 61.3% for FLP performed prior to 18 weeks compared to 78.0% - 86.7% across later gestational age epochs. This appears to be related to increased rates of donor IUFD following FLP performed before, versus after 18 weeks (28.0% vs. 9.3% - 14.1%). Rates of recipient IUFD/NND and donor NND were similar regardless of gestational age of FLP. Rates of PPROM were higher for earlier FLP, ranging from 45.6% for FLP before 18 weeks to 11.9% for FLP at 24 - 26 weeks gestational age. However, the gestational age of delivery was similar across gestational age epochs with a median of 31.7 weeks. In multivariate analysis, donor loss was independently associated with FLP before 18 weeks after adjusting for selective fetal growth restriction, Quintero stage and other covariates. PPROM and PTD were also associated with FLP before 18 weeks after adjusting for cervical length, placental location, trocar size, laser energy and amnioinfusion. CONCLUSION: FLP performed at earlier gestational ages is associated with lower overall survival, which is driven by higher risk of donor IUFD, as opposed to differences in PPROM or PTD. Counseling regarding survival should account for gestational age of presentation. This article is protected by copyright. All rights reserved.

5.
Nat Commun ; 15(1): 3634, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688897

ABSTRACT

Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.


Subject(s)
Central Nervous System Neoplasms , Ependymoma , Gene Expression Regulation, Neoplastic , Transcriptome , Humans , Child , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/metabolism , Ependymoma/genetics , Ependymoma/pathology , Ependymoma/metabolism , Child, Preschool , Astrocytoma/genetics , Astrocytoma/pathology , Astrocytoma/metabolism , Gene Expression Profiling/methods , Female , RNA-Seq , Male , Adolescent , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Cell Nucleus/metabolism , Cell Nucleus/genetics
6.
Nat Commun ; 15(1): 3635, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688903

ABSTRACT

Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors, we utilize a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identify a preponderance differential Cytosine-phosphate-Guanine site hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like histone deacetylase 4 and insulin-like growth factor 1 receptor, are associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric central nervous system tumors.


Subject(s)
Central Nervous System Neoplasms , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Child , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Epigenomics/methods , Repressor Proteins/metabolism , Repressor Proteins/genetics , Single-Cell Analysis , Transcription, Genetic , Cytosine/metabolism
7.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338815

ABSTRACT

MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.


Subject(s)
Extracellular Vesicles , MicroRNAs , Infant , Humans , Pregnancy , Female , MicroRNAs/metabolism , Milk, Human/metabolism , Cesarean Section , Cohort Studies , Epigenesis, Genetic , Pilot Projects , Postpartum Period , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
8.
Suicide Life Threat Behav ; 54(3): 405-415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38345128

ABSTRACT

INTRODUCTION: The concealment of suicidal ideation (SI) constitutes a significant barrier to reducing veteran deaths by suicide and is associated with fear of negative consequences (e.g., involuntary hospitalization). This study examined whether augmenting informed consent with psychoeducation aimed to help patients achieve a more realistic risk appraisal of consequences associated with disclosure of SI, decreased hesitancy to disclose SI, and related risk behaviors among U.S. veterans. METHOD: Participants (N = 133) were recruited from combat veteran social media groups and were randomly assigned to a video simulated treatment-as-usual informed consent (control) or to one of two psychoeducation-enhanced informed consent conditions (psychoed, psychoed + trust). RESULTS: Compared with the control group, participants in both psychoeducation and enhanced informed consent conditions reported lower hesitancy to disclose SI, firearm access, and problems with drugs/thoughts of harming others, as well as greater trust and respect for the simulated clinician. CONCLUSIONS: These findings suggest that brief psychoeducation regarding common factors that affect hesitancy to disclose SI may be beneficial for increasing trust in providers during the informed consent process and decreasing concealment of SI and firearm access among veterans.


Subject(s)
Informed Consent , Suicidal Ideation , Veterans , Adult , Female , Humans , Male , Middle Aged , Informed Consent/psychology , Risk Factors , Self Disclosure , Trust/psychology , United States , Veterans/psychology
9.
Epigenomics ; 16(5): 293-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356412

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.


Subject(s)
DNA Methylation , Furans , Polyether Polyketides , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ketones/pharmacology , Ketones/therapeutic use , DNA/metabolism , Cell Line, Tumor , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics
10.
Clin Epigenetics ; 16(1): 5, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38173042

ABSTRACT

BACKGROUND: Among men, prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer death. Etiologic factors associated with both prostate carcinogenesis and somatic alterations in tumors are incompletely understood. While genetic variants associated with PCa have been identified, epigenetic alterations in PCa are relatively understudied. To date, DNA methylation (DNAm) and gene expression (GE) in PCa have been investigated; however, these studies did not correct for cell-type proportions of the tumor microenvironment (TME), which could confound results. METHODS: The data (GSE183040) consisted of DNAm and GE data from both tumor and adjacent non-tumor prostate tissue of 56 patients who underwent radical prostatectomies prior to any treatment. This study builds upon previous studies that examined methylation patterns and GE in PCa patients by using a novel tumor deconvolution approach to identify and correct for cell-type proportions of the TME in its epigenome-wide association study (EWAS) and differential expression analysis (DEA). RESULTS: The inclusion of cell-type proportions in EWASs and DEAs reduced the scope of significant alterations associated with PCa. We identified 2,093 significantly differentially methylated CpGs (DMC), and 51 genes associated with PCa, including PCA3, SPINK1, and AMACR. CONCLUSIONS: This work illustrates the importance of correcting for cell types of the TME when performing EWASs and DEAs on PCa samples, and establishes a more confounding-adverse methodology. We identified a more tumor-cell-specific set of altered genes and epigenetic marks that can be further investigated as potential biomarkers of disease or potential therapeutic targets.


Subject(s)
DNA Methylation , Prostatic Neoplasms , Male , Humans , Epigenesis, Genetic , Tumor Microenvironment/genetics , CpG Islands , Prostatic Neoplasms/pathology , Gene Expression , Trypsin Inhibitor, Kazal Pancreatic/genetics , Trypsin Inhibitor, Kazal Pancreatic/metabolism
11.
Epigenomics ; 16(1): 41-56, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38221889

ABSTRACT

Background: Bladder cancer and therapy responses hinge on immune profiles in the tumor microenvironment (TME) and blood, yet studies linking tumor-infiltrating immune cells to peripheral immune profiles are limited. Methods: DNA methylation cytometry quantified TME and matched peripheral blood immune cell proportions. With tumor immune profile data as the input, subjects were grouped by immune infiltration status and consensus clustering. Results: Immune hot and cold groups had different immune compositions in the TME but not in circulating blood. Two clusters of patients identified with consensus clustering had different immune compositions not only in the TME but also in blood. Conclusion: Detailed immune profiling via methylation cytometry reveals the significance of understanding tumor and systemic immune relationships in cancer patients.


Bladder cancer and treatment outcomes depend on the immune profiles in the tumor and blood. Our study, using DNA methylation cytometry, measured immune cell proportions in both areas. Patients were grouped based on immune status and consensus clustering. Results showed distinct immune compositions in the tumor, but not in blood, for hot and cold groups. Consensus clustering revealed two patient clusters with differing immune compositions in both tumor and blood. This detailed immune profiling highlights the importance of understanding the complex interplay between tumor and systemic immunity in bladder cancer patients.


Subject(s)
Tumor Microenvironment , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Cluster Analysis , DNA Methylation , Protein Processing, Post-Translational , Prognosis
12.
NPJ Precis Oncol ; 8(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172524

ABSTRACT

Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing / assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory efficiency bottlenecks for rapid and complete intraoperative margin assessment.

13.
Exp Dermatol ; 33(1): e14949, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37864429

ABSTRACT

Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumour removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. The aim of this study was to develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. To do this, a retrospective cohort study was conducted using frozen cSCC section slides. These slides were scanned and annotated, delineating benign tissue structures, inflammation and tumour to develop an AI algorithm for real-time margin analysis. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC. This algorithm demonstrated proof of concept for identifying cSCC with high accuracy, highlighting the potential for integration of AI into the surgical workflow. Incorporation of AI algorithms may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumours/neoplasms. Further algorithmic improvement incorporating surrounding tissue context is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumours, and to map tumours to their original anatomical position/orientation.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Deep Learning , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Mohs Surgery , Skin Neoplasms/pathology , Retrospective Studies , Frozen Sections , Artificial Intelligence , Carcinoma, Basal Cell/pathology
14.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-37609141

ABSTRACT

Cancer cells are often aneuploid and frequently display elevated rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). CIN is commonly caused by hyperstable kinetochore-microtubule (K-MT) attachments that reduces the efficiency of correction of erroneous K-MT attachments. We recently showed that UMK57, a chemical agonist of MCAK (alias KIF2C) improves chromosome segregation fidelity in CIN cancer cells although cells rapidly develop adaptive resistance. To determine the mechanism of resistance we performed unbiased proteomic screens which revealed increased phosphorylation in cells adapted to UMK57 at two Aurora kinase A phosphoacceptor sites on BOD1L1 (alias FAM44A). BOD1L1 depletion or Aurora kinase A inhibition eliminated resistance to UMK57 in CIN cancer cells. BOD1L1 localizes to spindles/kinetochores during mitosis, interacts with the PP2A phosphatase, and regulates phosphorylation levels of kinetochore proteins, chromosome alignment, mitotic progression and fidelity. Moreover, the BOD1L1 gene is mutated in a subset of human cancers, and BOD1L1 depletion reduces cell growth in combination with clinically relevant doses of taxol or Aurora kinase A inhibitor. Thus, an Aurora kinase A -BOD1L1-PP2A axis promotes faithful chromosome segregation during mitosis.

15.
Aging Cell ; 23(3): e14071, 2024 03.
Article in English | MEDLINE | ID: mdl-38146185

ABSTRACT

Aging is a significant risk factor for various human disorders, and DNA methylation clocks have emerged as powerful tools for estimating biological age and predicting health-related outcomes. Methylation data from blood DNA has been a focus of more recently developed DNA methylation clocks. However, the impact of immune cell composition on epigenetic age acceleration (EAA) remains unclear as only some clocks incorporate partial cell type composition information when analyzing EAA. We investigated associations of 12 immune cell types measured by cell-type deconvolution with EAA predicted by six widely-used DNA methylation clocks in data from >10,000 blood samples. We observed significant associations of immune cell composition with EAA for all six clocks tested. Across the clocks, nine or more of the 12 cell types tested exhibited significant associations with EAA. Higher memory lymphocyte subtype proportions were associated with increased EAA, and naïve lymphocyte subtypes were associated with decreased EAA. To demonstrate the potential confounding of EAA by immune cell composition, we applied EAA in rheumatoid arthritis. Our research maps immune cell type contributions to EAA in human blood and offers opportunities to adjust for immune cell composition in EAA studies to a significantly more granular level. Understanding associations of EAA with immune profiles has implications for the interpretation of epigenetic age and its relevance in aging and disease research. Our detailed map of immune cell type contributions serves as a resource for studies utilizing epigenetic clocks across diverse research fields, including aging-related diseases, precision medicine, and therapeutic interventions.


Subject(s)
Acceleration , Arthritis, Rheumatoid , Humans , Aging/genetics , DNA Methylation/genetics , Epigenesis, Genetic
16.
Epigenetics ; 19(1): 2289786, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38090774

ABSTRACT

DNA methylation has been extensively utilized to study epigenetic patterns across many diseases as well as to deconvolve blood cell type proportions. This study builds upon previous studies examining methylation patterns in paediatric patients with varying stages of Crohn's disease to extend the immune profiling of these patients using a novel deconvolution approach. Compared with control subjects, we observed significantly decreased levels of CD4 memory and naive, CD8 naive, and natural killer cells and elevated neutrophil levels in Crohn's disease. In addition, Crohn's patients had a significantly elevated neutrophil-to-lymphocyte ratio. Using an epigenome-wide association approach and adjusting for potential confounders, including cell type, we observed 397 differentially methylated CpG (DMC) sites associated with Crohn's disease. The top genetic pathway associated with the DMCs was the regulation of arginine metabolic processes which are involved in the regulation of T cells.


Subject(s)
Crohn Disease , Humans , Child , Crohn Disease/genetics , DNA Methylation
17.
Pac Symp Biocomput ; 29: 477-491, 2024.
Article in English | MEDLINE | ID: mdl-38160301

ABSTRACT

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Subject(s)
Skin Aging , Humans , Skin Aging/genetics , Reproducibility of Results , Computational Biology , Gene Expression Profiling , Eosine Yellowish-(YS) , Transcriptome
18.
Pac Symp Biocomput ; 29: 464-476, 2024.
Article in English | MEDLINE | ID: mdl-38160300

ABSTRACT

Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.


Subject(s)
Deep Learning , Neoplasms , Humans , Computational Biology , Neoplasms/genetics , Algorithms , Cluster Analysis
19.
Expo Health ; 15(4): 731-743, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38074282

ABSTRACT

Human milk is a rich source of microRNAs (miRNAs), which can be transported by extracellular vesicles and particles (EVPs) and are hypothesized to contribute to maternal-offspring communication and child development. Environmental contaminant impacts on EVP miRNAs in human milk are largely unknown. In a pilot study of 54 mother-child pairs from the New Hampshire Birth Cohort Study, we examined relationships between five metals (arsenic, lead, manganese, mercury, and selenium) measured in maternal toenail clippings, reflecting exposures during the periconceptional and prenatal periods, and EVP miRNA levels in human milk. 798 miRNAs were profiled using the NanoString nCounter platform; 200 miRNAs were widely detectable and retained for downstream analyses. Metal-miRNA associations were evaluated using covariate-adjusted robust linear regression models. Arsenic exposure during the periconceptional and prenatal periods was associated with lower total miRNA content in human milk EVPs (PBonferroni < 0.05). When evaluating miRNAs individually, 13 miRNAs were inversely associated with arsenic exposure, two in the periconceptional period and 11 in the prenatal period (PBonferroni < 0.05). Other metal-miRNA associations were not statistically significant after multiple testing correction (PBonferroni ≥ 0.05). Many of the arsenic-associated miRNAs are involved in lactation and have anti-inflammatory properties in the intestine and tumor suppressive functions in breast cells. Our findings raise the possibility that periconceptional and prenatal arsenic exposure may reduce levels of multiple miRNAs in human milk EVPs. However, larger confirmatory studies, which can apply environmental mixture approaches, evaluate potential effect modifiers of these relationships, and examine possible downstream consequences for maternal and child health and breastfeeding outcomes, are needed.

20.
medRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873186

ABSTRACT

Background: Spatial transcriptomics involves studying the spatial organization of gene expression within tissues, offering insights into the molecular diversity of tumors. While spatial gene expression is commonly amalgamated from 1-10 cells across 50-micron spots, recent methods have demonstrated the capability to disaggregate this information at subspot resolution by leveraging both expression and histological patterns. However, elucidating such information from histology alone presents a significant challenge but if solved can better permit spatial molecular analysis at cellular resolution for instances where Visium data is not available, reducing study costs. This study explores integrating single-cell histological and transcriptomic data to infer spatial mRNA expression patterns in whole slide images collected from a cohort of stage pT3 colorectal cancer patients. A cell graph neural network algorithm was developed to align histological information extracted from detected cells with single cell RNA patterns through optimal transport methods, facilitating the analysis of cellular groupings and gene relationships. This approach leveraged spot-level expression as an intermediary to co-map histological and transcriptomic information at the single-cell level. Results: Our study demonstrated that single-cell transcriptional heterogeneity within a spot could be predicted from histological markers extracted from cells detected within a spot. Furthermore, our model exhibited proficiency in delineating overarching gene expression patterns across whole-slide images. This approach compared favorably to traditional patch-based computer vision methods as well as other methods which did not incorporate single cell expression during the model fitting procedures. Topological nuances of single-cell expression within a Visium spot were preserved using the developed methodology. Conclusion: This innovative approach augments the resolution of spatial molecular assays utilizing histology as a sole input through synergistic co-mapping of histological and transcriptomic datasets at the single-cell level, anchored by spatial transcriptomics. While initial results are promising, they warrant rigorous validation. This includes collaborating with pathologists for precise spatial identification of distinct cell types and utilizing sophisticated assays, such as Xenium, to attain deeper subcellular insights.

SELECTION OF CITATIONS
SEARCH DETAIL