Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 42: 103601, 2024.
Article in English | MEDLINE | ID: mdl-38579595

ABSTRACT

BACKGROUND: Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies. OBJECTIVE: This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain. METHODS: We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity. RESULTS: Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN. CONCLUSIONS: Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.


Subject(s)
Magnetic Resonance Imaging , Nerve Net , Stroke , Humans , Male , Female , Middle Aged , Stroke/physiopathology , Stroke/complications , Stroke/diagnostic imaging , Aged , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Adult , Learning/physiology , Brain/physiopathology , Brain/diagnostic imaging , Motor Skills/physiology , Learning Disabilities/physiopathology , Learning Disabilities/etiology , Connectome/methods
2.
Appl Clin Inform ; 15(2): 234-249, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301729

ABSTRACT

BACKGROUND: Clinical research, particularly in scientific data, grapples with the efficient management of multimodal and longitudinal clinical data. Especially in neuroscience, the volume of heterogeneous longitudinal data challenges researchers. While current research data management systems offer rich functionality, they suffer from architectural complexity that makes them difficult to install and maintain and require extensive user training. OBJECTIVES: The focus is the development and presentation of a data management approach specifically tailored for clinical researchers involved in active patient care, especially in the neuroscientific environment of German university hospitals. Our design considers the implementation of FAIR (Findable, Accessible, Interoperable, and Reusable) principles and the secure handling of sensitive data in compliance with the General Data Protection Regulation. METHODS: We introduce a streamlined database concept, featuring an intuitive graphical interface built on Hypertext Markup Language revision 5 (HTML5)/Cascading Style Sheets (CSS) technology. The system can be effortlessly deployed within local networks, that is, in Microsoft Windows 10 environments. Our design incorporates FAIR principles for effective data management. Moreover, we have streamlined data interchange through established standards like HL7 Clinical Document Architecture (CDA). To ensure data integrity, we have integrated real-time validation mechanisms that cover data type, plausibility, and Clinical Quality Language logic during data import and entry. RESULTS: We have developed and evaluated our concept with clinicians using a sample dataset of subjects who visited our memory clinic over a 3-year period and collected several multimodal clinical parameters. A notable advantage is the unified data matrix, which simplifies data aggregation, anonymization, and export. THIS STREAMLINES DATA EXCHANGE AND ENHANCES DATABASE INTEGRATION WITH PLATFORMS LIKE KONSTANZ INFORMATION MINER (KNIME): . CONCLUSION: Our approach offers a significant advancement for capturing and managing clinical research data, specifically tailored for small-scale initiatives operating within limited information technology (IT) infrastructures. It is designed for immediate, hassle-free deployment by clinicians and researchers.The database template and precompiled versions of the user interface are available at: https://github.com/stebro01/research_database_sqlite_i2b2.git.


Subject(s)
Data Management , Programming Languages , Humans
3.
EClinicalMedicine ; 68: 102434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38318123

ABSTRACT

Background: COVID-19 survivors may experience a wide range of chronic cognitive symptoms for months or years as part of post-COVID-19 conditions (PCC). To date, there is no definitive objective cognitive marker for PCC. We hypothesised that a key common deficit in people with PCC might be generalised cognitive slowing. Methods: To examine cognitive slowing, patients with PCC completed two short web-based cognitive tasks, Simple Reaction Time (SRT) and Number Vigilance Test (NVT). 270 patients diagnosed with PCC at two different clinics in UK and Germany were compared to two control groups: individuals who contracted COVID-19 before but did not experience PCC after recovery (No-PCC group) and uninfected individuals (No-COVID group). All patients with PCC completed the study between May 18, 2021 and July 4, 2023 in Jena University Hospital, Jena, Germany and Long COVID clinic, Oxford, UK. Findings: We identified pronounced cognitive slowing in patients with PCC, which distinguished them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. Cognitive slowing was evident even on a 30-s task measuring simple reaction time (SRT), with patients with PCC responding to stimuli ∼3 standard deviations slower than healthy controls. 53.5% of patients with PCC's response speed was slower than 2 standard deviations from the control mean, indicating a high prevalence of cognitive slowing in PCC. This finding was replicated across two clinic samples in Germany and the UK. Comorbidities such as fatigue, depression, anxiety, sleep disturbance, and post-traumatic stress disorder did not account for the extent of cognitive slowing in patients with PCC. Furthermore, cognitive slowing on the SRT was highly correlated with the poor performance of patients with PCC on the NVT measure of sustained attention. Interpretation: Together, these results robustly demonstrate pronounced cognitive slowing in people with PCC, which distinguishes them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. This might be an important factor contributing to some of the cognitive impairments reported in patients with PCC. Funding: Wellcome Trust (206330/Z/17/Z), NIHR Oxford Health Biomedical Research Centre, the Thüringer Aufbaubank (2021 FGI 0060), German Forschungsgemeinschaft (DFG, FI 1424/2-1) and the Horizon 2020 Framework Programme of the European Union (ITN SmartAge, H2020-MSCA-ITN-2019-859890).

SELECTION OF CITATIONS
SEARCH DETAIL