Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 134
1.
Sci Rep ; 14(1): 7880, 2024 04 03.
Article En | MEDLINE | ID: mdl-38570593

Convergence of neural implants with artificial intelligence (AI) presents opportunities for the development of novel neural implants and improvement of existing neurotechnologies. While such technological innovation carries great promise for the restoration of neurological functions, they also raise ethical challenges. Developers of AI-driven neural implants possess valuable knowledge on the possibilities, limitations and challenges raised by these innovations; yet their perspectives are underrepresented in academic literature. This study aims to explore perspectives of developers of neurotechnology to outline ethical implications of three AI-driven neural implants: a cochlear implant, a visual neural implant, and a motor intention decoding speech-brain-computer-interface. We conducted semi-structured focus groups with developers (n = 19) of AI-driven neural implants. Respondents shared ethically relevant considerations about AI-driven neural implants that we clustered into three themes: (1) design aspects; (2) challenges in clinical trials; (3) impact on users and society. Developers considered accuracy and reliability of AI-driven neural implants conditional for users' safety, authenticity, and mental privacy. These needs were magnified by the convergence with AI. Yet, the need for accuracy and reliability may also conflict with potential benefits of AI in terms of efficiency and complex data interpretation. We discuss strategies to mitigate these challenges.


Artificial Intelligence , Cochlear Implants , Reproducibility of Results , Qualitative Research , Focus Groups
2.
World Neurosurg ; 185: e523-e531, 2024 May.
Article En | MEDLINE | ID: mdl-38382757

BACKGROUND: Neurosurgery, an intricate and dynamic surgical specialty, faces challenges in attracting medical graduates. Despite its potential appeal, a decreasing trend in medical students opting for surgical specialties, including neurosurgery, is noted. This study aims to assess European medical students' perceptions of neurosurgery, focusing on South-East Europe, and address concerns about the declining interest in this field. METHODS: A comprehensive digital survey, comprising 33 questions, was distributed to 1115 medical students across 17 European countries. The survey, conducted over 9 months, gathered responses through European neurosurgical societies, the European Association of Neurosurgical Societies (EANS), and university channels. Statistical analysis utilized IBM Statistical Package for the Social Sciences, presenting data through counts, proportions, and χ2 tests. RESULTS: The study reveals that, over the survey period, 834 medical students completed the questionnaire, with a predominant representation from South-East Europe. While 43.2% of participants were considering a surgical career, neurosurgery emerged as the most preferred specialty (26.37%). Despite this interest, 80.2% reported insufficient knowledge about pursuing a neurosurgical career, with limited exposure during medical education. Concerns about work-life balance, heavy workload, and hierarchical structures were prominent among respondents. CONCLUSIONS: The findings underscore the need for targeted interventions to address concerns influencing medical students' decisions regarding neurosurgery. Improving neurosurgical education, dispelling misconceptions, and creating a supportive work environment are crucial steps to attract and retain diverse talented individuals in neurosurgery. These efforts will be vital in narrowing the gap between the demand for neurosurgeons and the number of medical graduates entering the field, ensuring a sustainable future for this essential surgical specialty.


Career Choice , Neurosurgery , Students, Medical , Students, Medical/psychology , Students, Medical/statistics & numerical data , Humans , Neurosurgery/education , Male , Female , Surveys and Questionnaires , Europe , Adult , Greece , Young Adult , Serbia , Turkey , Attitude of Health Personnel
3.
J Neurooncol ; 166(3): 485-492, 2024 Feb.
Article En | MEDLINE | ID: mdl-38285243

PURPOSE: Next generation sequencing (NGS) is an important tool used in clinical practice to obtain the required molecular information for accurate diagnostics of high-grade adult-type diffuse glioma (HGG). Since individual centers use either in-house produced or standardized panels, interlaboratory variation could play a role in the practice of HGG diagnosis and treatment. This study aimed to investigate the current practice in NGS application for both primary and recurrent HGG. METHODS: This nationwide Dutch survey used the expertise of (neuro)pathologists and clinical scientists in molecular pathology (CSMPs) by sending online questionnaires on clinical and technical aspects. Primary outcome was an overview of panel composition in the different centers for diagnostic practice of HGG. Secondary outcomes included practice for recurrent HGG and future perspectives. RESULTS: Out of twelve neuro-oncology centers, the survey was filled out by eleven (neuro)pathologists and seven CSMPs. The composition of the diagnostic NGS panels differed in each center with numbers of genes ranging from 12 to 523. Differences are more pronounced when tests are performed to find therapeutic targets in the case of recurrent disease: about half of the centers test for gene fusions (60%) and tumor mutational burden (40%). CONCLUSION: Current notable interlaboratory variations as illustrated in this study should be reduced in order to refine diagnostics and improve precision oncology. In-house developed tests, standardized panels and routine application of broad gene panels all have their own advantages and disadvantages. Future research would be of interest to study the clinical impact of variation in diagnostic approaches.


Brain Neoplasms , Glioma , Adult , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Glioma/diagnosis , Glioma/genetics , Glioma/drug therapy , High-Throughput Nucleotide Sequencing , Netherlands , Precision Medicine
4.
Thromb Res ; 232: 27-34, 2023 12.
Article En | MEDLINE | ID: mdl-37918288

BACKGROUND: Glioblastoma patients are at high risk of developing venous thromboembolism (VTE). Tumor-intrinsic features are considered to play a role, but the underlying pathophysiological mechanisms remain incompletely understood. OBJECTIVES: To identify tumor-expressed genes and signaling pathways that associate with glioblastoma-related VTE by using next generation RNA-sequencing (RNA-Seq). METHODS: The tumor gene expression profile of 23 glioblastoma patients with VTE and 23 glioblastoma patients without VTE was compared using an unpaired analysis. Ingenuity Pathway Analysis (IPA) core analysis was performed on the top 50 differentially expressed genes to explore associated functions and pathways. Based on full RNA-Seq data, molecular glioblastoma subtypes were determined by performing cluster analysis. RESULTS: Of the 19,327 genes, 1246 (6.4 %) were differentially expressed between glioblastoma patients with and without VTE (unadjusted P < 0.05). The most highly overexpressed gene was GLI1, a classical target gene in the Sonic Hedgehog (Shh) signaling pathway (log2 fold change: 3.7; unadjusted P < 0.0001, adjusted P = 0.219). In line, Shh signaling was among the top canonical pathways and processes associated with VTE. The proportion of patients with the proneural/neural glioblastoma subtype was higher among those with VTE than controls. CONCLUSION: Shh signaling may be involved in the development of glioblastoma-related VTE.


Glioblastoma , Venous Thromboembolism , Humans , Venous Thromboembolism/genetics , Glioblastoma/complications , Glioblastoma/genetics , Glioblastoma/pathology , Case-Control Studies , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Signal Transduction/genetics , RNA
5.
Acta Neurochir (Wien) ; 165(12): 4259-4277, 2023 Dec.
Article En | MEDLINE | ID: mdl-37672093

BACKGROUND: Focused ultrasound (FUS) shows promise for enhancing drug delivery to the brain by temporarily opening the blood-brain barrier (BBB), and it is increasingly used in the clinical setting to treat brain tumours. It remains however unclear whether FUS is being introduced in an ethically and methodologically sound manner. The IDEAL-D framework for the introduction of surgical innovations and the SYRCLE and ROBINS-I tools for assessing the risk of bias in animal studies and non-randomized trials, respectively, provide a comprehensive evaluation for this. OBJECTIVES AND METHODS: A comprehensive literature review on FUS in neuro-oncology was conducted. Subsequently, the included studies were evaluated using the IDEAL-D framework, SYRCLE, and ROBINS-I tools. RESULTS: In total, 19 published studies and 12 registered trials were identified. FUS demonstrated successful BBB disruption, increased drug delivery, and improved survival rates. However, the SYRCLE analysis revealed a high risk of bias in animal studies, while the ROBINS-I analysis found that most human studies had a high risk of bias due to a lack of blinding and heterogeneous samples. Of the 15 pre-clinical stage 0 studies, only six had formal ethical approval, and only five followed animal care policies. Both stage 1 studies and stage 1/2a studies failed to provide information on patient data confidentiality. Overall, no animal or human study reached the IDEAL-D stage endpoint. CONCLUSION: FUS holds promise for enhancing drug delivery to the brain, but its development and implementation must adhere to rigorous safety standards using the established ethical and methodological frameworks. The complementary use of IDEAL-D, SYRCLE, and ROBINS-I tools indicates a high risk of bias and ethical limitations in both animal and human studies, highlighting the need for further improvements in study design for a safe implementation of FUS in neuro-oncology.


Blood-Brain Barrier , Brain Neoplasms , Animals , Humans , Brain , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Drug Delivery Systems
6.
Neurooncol Pract ; 10(4): 360-369, 2023 Aug.
Article En | MEDLINE | ID: mdl-37457228

Background: Despite current best treatment options, a glioblastoma almost inevitably recurs after primary treatment. However, in the absence of clear evidence, current guidelines on recurrent glioblastoma are not well-defined. Re-resection is one of the possible treatment modalities, though it can be challenging to identify those patients who will benefit. Therefore, treatment decisions are made based on multidisciplinary discussions. This study aimed to investigate the current practice variation between neuro-oncology specialists. Methods: In this nationwide study among Dutch neuro-oncology specialists, we surveyed possible practice variation. Via an online survey, 4 anonymized recurrent glioblastoma cases were presented to neurosurgeons, neuro-oncologists, medical oncologists, and radiation oncologists in The Netherlands using a standardized questionnaire on whether and why they would recommend a re-resection or not. The results were used to provide a qualitative analysis of the current practice in The Netherlands. Results: The survey was filled out by 56 respondents, of which 15 (27%) were neurosurgeons, 26 (46%) neuro-oncologists, 2 (4%) medical oncologists, and 13 (23%) radiation oncologists. In 2 of the 4 cases, there appeared to be clinical equipoise. Overall, neurosurgeons tended to recommend re-resection more frequently compared to the other specialists. Neurosurgeons and radiation oncologists showed opposite recommendations in 2 cases. Conclusions: This study showed that re-resection of recurrent glioblastoma is subject to practice variation both between and within neuro-oncology specialties. In the absence of unambiguous guidelines, we observed a relationship between preferred practice and specialty. Reduction of this practice variation is important; to achieve this, adequate prospective studies are essential.

7.
J Intensive Care Med ; 38(12): 1143-1150, 2023 Dec.
Article En | MEDLINE | ID: mdl-37415510

Background: Analgo-sedation plays an important role during intensive care management of traumatic brain injury (TBI) patients, however, limited evidence is available to guide practice. We sought to quantify practice-pattern variation in neurotrauma sedation management, surveying an international sample of providers. Methods: An electronic survey consisting of 56 questions was distributed internationally to neurocritical care providers utilizing the Research Electronic Data Capture platform. Descriptive statistics were used to quantitatively describe and summarize the responses. Results: Ninety-five providers from 37 countries responded. 56.8% were attending physicians with primary medical training most commonly in intensive care medicine (68.4%) and anesthesiology (26.3%). Institutional sedation guidelines for TBI patients were available in 43.2%. Most common sedative agents for induction and maintenance, respectively, were propofol (87.5% and 88.4%), opioids (60.2% and 70.5%), and benzodiazepines (53.4% and 68.4%). Induction and maintenance sedatives, respectively, are mostly chosen according to provider preference (68.2% and 58.9%) rather than institutional guidelines (26.1% and 35.8%). Sedation duration for patients with intracranial hypertension ranged from 24 h to 14 days. Neurological wake-up testing (NWT) was routinely performed in 70.5%. The most common NWT frequency was every 24 h (47.8%), although 20.8% performed NWT at least every 2 h. Richmond Agitation and Sedation Scale targets varied from deep sedation (34.7%) to alert and calm (17.9%). Conclusions: Among critically ill TBI patients, sedation management follows provider preference rather than institutional sedation guidelines. Wide practice-pattern variation exists for the type, duration, and target of sedative management and NWT performance. Future comparative effectiveness research investigating these differences may help optimize sedation strategies to promote recovery.


Brain Injuries, Traumatic , Propofol , Humans , Hypnotics and Sedatives , Intensive Care Units , Critical Care , Surveys and Questionnaires , Brain Injuries, Traumatic/therapy
8.
World Neurosurg ; 178: e221-e229, 2023 Oct.
Article En | MEDLINE | ID: mdl-37467955

OBJECTIVE: The choice between external ventricular drain (EVD) and intraparenchymal monitor (IPM) for managing intracranial pressure in moderate-to-severe traumatic brain injury (msTBI) patients remains controversial. This study aimed to investigate factors associated with receiving EVD versus IPM and to compare outcomes and clinical management between EVD and IPM patients. METHODS: Adult msTBI patients at 2 similar academic institutions were identified. Logistic regression was performed to identify factors associated with receiving EVD versus IPM (model 1) and to compare EVD versus IPM in relation to patient outcomes after controlling for potential confounders (model 2), through odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Of 521 patients, 167 (32.1%) had EVD and 354 (67.9%) had IPM. Mean age, sex, and Injury Severity Score were comparable between groups. Epidural hemorrhage (EDH) (OR 0.43, 95% CI 0.21-0.85), greater midline shift (OR 0.90, 95% CI 0.82-0.98), and the hospital with higher volume (OR 0.14, 95% CI 0.09-0.22) were independently associated with lower odds of receiving an EVD whereas patients needing a craniectomy were more likely to receive an EVD (OR 2.04, 95% CI 1.12-3.73). EVD patients received more intense medical treatment requiring hyperosmolar therapy compared to IPM patients (64.1% vs. 40.1%). No statistically significant differences were found in patient outcomes. CONCLUSIONS: While EDH, greater midline shift, and hospital with larger patient volume were associated with receiving an IPM, the need for a craniectomy was associated with receiving an EVD. EVD patients received different clinical management than IPM patients with no significant differences in patient outcomes.


Brain Injuries, Traumatic , Brain Injuries , Adult , Humans , Retrospective Studies , Brain Injuries, Traumatic/surgery , Injury Severity Score , Drainage
9.
Brain Spine ; 3: 101764, 2023.
Article En | MEDLINE | ID: mdl-37383452
11.
Neurocrit Care ; 39(3): 557-564, 2023 Dec.
Article En | MEDLINE | ID: mdl-37173560

Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide and many patients with TBI require intensive care unit (ICU) management. When facing a life-threatening illness, such as TBI, a palliative care approach that focuses on noncurative aspects of care should always be considered in the ICU. Research shows that neurosurgical patients in the ICU receive palliative care less frequently than the medical patients in the ICU, which is a missed opportunity for these patients. However, providing appropriate palliative care to neurotrauma patients in an ICU can be difficult, particularly for young adult patients. The patients' prognoses are often unclear, the likelihood of advance directives is small, and the bereaved families must act as decision-makers. This article highlights the different aspects of the palliative care approach as well as barriers and challenges that accompany the TBI patient population, with a particular focus on young adult patients with TBI and the role of their family members. The article concludes with recommendations for physicians for effective and adequate communication to successfully implement the palliative care approach into standard ICU care and to improve quality of care for patients with TBI and their families.


Brain Injuries, Traumatic , Palliative Care , Young Adult , Humans , Intensive Care Units , Brain Injuries, Traumatic/therapy , Family , Prognosis
12.
Cell Rep Methods ; 3(2): 100412, 2023 02 27.
Article En | MEDLINE | ID: mdl-36936071

Tools to effectively demonstrate and quantify functional delivery in cellular communication have been lacking. This study reports the use of a fluorescently labeled split Nanoluc reporter system to demonstrate and quantify functional transfer between cells in vitro and in a subcutaneous tumor mouse model. Our construct allows monitoring of direct, indirect, and specifically extracellular vesicle-mediated functional communication.


Extracellular Vesicles , Mice , Animals , Extracellular Vesicles/genetics , Luciferases/genetics , Cell Communication , Communication
14.
Neuro Oncol ; 25(5): 958-972, 2023 05 04.
Article En | MEDLINE | ID: mdl-36420703

BACKGROUND: The impact of extent of resection (EOR), residual tumor volume (RTV), and gross-total resection (GTR) in glioblastoma subgroups is currently unknown. This study aimed to analyze their impact on patient subgroups in relation to neurological and functional outcomes. METHODS: Patients with tumor resection for eloquent glioblastoma between 2010 and 2020 at 4 tertiary centers were recruited from a cohort of 3919 patients. RESULTS: One thousand and forty-seven (1047) patients were included. Higher EOR and lower RTV were significantly associated with improved overall survival (OS) and progression-free survival (PFS) across all subgroups, but RTV was a stronger prognostic factor. GTR based on RTV improved median OS in the overall cohort (19.0 months, P < .0001), and in the subgroups with IDH wildtype tumors (18.5 months, P = .00055), MGMT methylated tumors (35.0 months, P < .0001), aged <70 (20.0 months, P < .0001), NIHSS 0-1 (19.0 months, P = .0038), KPS 90-100 (19.5 months, P = .0012), and KPS ≤80 (17.0 months, P = .036). GTR was significantly associated with improved OS in the overall cohort (HR 0.58, P = .0070) and improved PFS in the NIHSS 0-1 subgroup (HR 0.47, P = .012). GTR combined with preservation of neurological function (OFO 1 grade) yielded the longest survival times (median OS 22.0 months, P < .0001), which was significantly more frequently achieved in the awake mapping group (50.0%) than in the asleep group (21.8%) (P < .0001). CONCLUSIONS: Maximum resection was especially beneficial in the subgroups aged <70, NIHSS 0-1, and KPS 90-100 without increasing the risk of postoperative NIHSS or KPS worsening. These findings may assist surgical decision making in individual glioblastoma patients.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/pathology , Retrospective Studies , Progression-Free Survival , Neurosurgical Procedures
15.
Neuro Oncol ; 25(4): 701-709, 2023 04 06.
Article En | MEDLINE | ID: mdl-35972438

BACKGROUND: IDH1/2 wildtype (IDHwt) glioma WHO grade 2 and 3 patients with pTERT mutation and/or EGFR amplification and/or + 7/-10 chromosome gain/loss have a similar overall survival time as IDHwt glioblastoma patients, and are both considered glioblastoma IDHwt according to the WHO 2021 classification. However, differences in seizure onset have been observed. This study aimed to compare the course of epilepsy in the 2 glioblastoma subtypes. METHODS: We analyzed epilepsy data of an existing cohort including IDHwt histologically lower-grade glioma WHO grade 2 and 3 with molecular glioblastoma-like profile (IDHwt hLGG) and IDHwt glioblastoma patients. Primary outcome was the incidence proportion of epilepsy during the disease course. Secondary outcomes included, among others, onset of epilepsy, number of seizure days, and antiepileptic drug (AED) polytherapy. RESULTS: Out of 254 patients, 78% (50/64) IDHwt hLGG and 68% (129/190) IDHwt glioblastoma patients developed epilepsy during the disease (P = .121). Epilepsy onset before histopathological diagnosis occurred more frequently in IDHwt hLGG compared to IDHwt glioblastoma patients (90% vs 60%, P < .001), with a significantly longer median time to diagnosis (3.5 vs 1.3 months, P < .001). Median total seizure days was also longer for IDHwt hLGG patients (7.0 vs 3.0, P = .005), and they received more often AED polytherapy (32% vs 17%, P = .028). CONCLUSIONS: Although the incidence proportion of epilepsy during the entire disease course is similar, IDHwt hLGG patients show a significantly higher incidence of epilepsy before diagnosis and a significantly longer median time between first seizure and diagnosis compared to IDHwt glioblastoma patients, indicating a distinct clinical course.


Brain Neoplasms , Epilepsy , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Brain Neoplasms/pathology , Glioma/pathology , Mutation , Seizures , Anticonvulsants , Isocitrate Dehydrogenase/genetics
16.
BMC Med Genomics ; 15(1): 233, 2022 11 04.
Article En | MEDLINE | ID: mdl-36333718

BACKGROUND: Glioblastoma (GBM), the most common glial primary brain tumour, is without exception lethal. Every year approximately 600 patients are diagnosed with this heterogeneous disease in The Netherlands. Despite neurosurgery, chemo -and radiation therapy, these tumours inevitably recur. Currently, there is no gold standard at time of recurrence and treatment options are limited. Unfortunately, the results of dedicated trials with new drugs have been very disappointing. The goal of the project is to obtain the evidence for changing standard of care (SOC) procedures to include whole genome sequencing (WGS) and consequently adapt care guidelines for this specific patient group with very poor prognosis by offering optimal and timely benefit from novel therapies, even in the absence of traditional registration trials for this small volume cancer indication. METHODS: The GLOW study is a prospective diagnostic cohort study executed through collaboration of the Hartwig Medical Foundation (Hartwig, a non-profit organisation) and twelve Dutch centers that perform neurosurgery and/or treat GBM patients. A total of 200 patients with a first recurrence of a glioblastoma will be included. Dual primary endpoint is the percentage of patients who receive targeted therapy based on the WGS report and overall survival. Secondary endpoints include WGS report success rate and number of targeted treatments available based on WGS reports and number of patients starting a treatment in presence of an actionable variant. At recurrence, study participants will undergo SOC neurosurgical resection. Tumour material will then, together with a blood sample, be sent to Hartwig where it will be analysed by WGS. A diagnostic report with therapy guidance, including potential matching off-label drugs and available clinical trials will then be sent back to the treating physician for discussing of the results in molecular tumour boards and targeted treatment decision making. DISCUSSION: The GLOW study aims to provide the scientific evidence for changing the SOC diagnostics for patients with a recurrent glioblastoma by investigating complete genome diagnostics to maximize treatment options for this patient group. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05186064.


Brain Neoplasms , Glioblastoma , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Chronic Disease , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/therapy , Multicenter Studies as Topic , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/therapy , Prospective Studies , Whole Genome Sequencing
17.
Cell Rep Med ; 3(11): 100821, 2022 11 15.
Article En | MEDLINE | ID: mdl-36384097

An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future.


Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Brain Neoplasms/drug therapy , Doxorubicin/pharmacology , Immunotherapy , Tumor Microenvironment
18.
J Neurosurg ; : 1-9, 2022 Oct 21.
Article En | MEDLINE | ID: mdl-36272119

OBJECTIVE: The incidence of leptomeningeal disease (LMD) has increased as treatments for brain metastases (BMs) have improved and patients with metastatic disease are living longer. Sample sizes of individual studies investigating LMD after surgery for BMs and its risk factors have been limited, ranging from 200 to 400 patients at risk for LMD, which only allows the use of conventional biostatistics. Here, the authors used machine learning techniques to enhance LMD prediction in a cohort of surgically treated BMs. METHODS: A conditional survival forest, a Cox proportional hazards model, an extreme gradient boosting (XGBoost) classifier, an extra trees classifier, and logistic regression were trained. A synthetic minority oversampling technique (SMOTE) was used to train the models and handle the inherent class imbalance. Patients were divided into an 80:20 training and test set. Fivefold cross-validation was used on the training set for hyperparameter optimization. Patients eligible for study inclusion were adults who had consecutively undergone neurosurgical BM treatment, had been admitted to Brigham and Women's Hospital from January 2007 through December 2019, and had a minimum of 1 month of follow-up after neurosurgical treatment. RESULTS: A total of 1054 surgically treated BM patients were included in this analysis. LMD occurred in 168 patients (15.9%) at a median of 7.05 months after BM diagnosis. The discrimination of LMD occurrence was optimal using an XGboost algorithm (area under the curve = 0.83), and the time to LMD was prognosticated evenly by the random forest algorithm and the Cox proportional hazards model (C-index = 0.76). The most important feature for both LMD classification and regression was the BM proximity to the CSF space, followed by a cerebellar BM location. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest risk factors for both LMD occurrence and time to LMD. CONCLUSIONS: The outcomes of LMD patients in the BM population are predictable using SMOTE and machine learning. Lymph node metastasis of the primary tumor at BM diagnosis and a cerebellar BM location were the strongest LMD risk factors.

20.
Cancer Cell ; 40(10): 1089-1091, 2022 10 10.
Article En | MEDLINE | ID: mdl-36179688

A recent Nature Medicine article reported a phase II single-arm trial assessing the efficacy of a triple-mutated, third-generation oncolytic herpes simplex virus type 1 in patients with recurrent or residual glioblastoma. We discuss the results and highlight the potential of locally administered virus-based therapies to fight these lethal tumors.


Glioblastoma , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Glioblastoma/therapy , Herpesvirus 1, Human/genetics , Humans , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Standard of Care
...