Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 146(8): 3444-3454, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37143309

ABSTRACT

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Subject(s)
Brain Edema , Hereditary Central Nervous System Demyelinating Diseases , Humans , Membrane Proteins/genetics , Brain Edema/genetics , Brain Edema/metabolism , Mutation/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Brain/metabolism , Astrocytes/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
Neuroimage Clin ; 20: 783-792, 2018.
Article in English | MEDLINE | ID: mdl-30268027

ABSTRACT

BACKGROUND AND OBJECTIVES: Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder characterized by tics. A hallmark of GTS is the ability to voluntarily suppress tics. Our aim was to distinguish the neural circuits involved in the voluntary suppression of ocular tics in GTS patients from blink suppression in healthy subjects. METHODS: Fifteen GTS patients and 22 healthy control subjects were included in a multimodal study using eye-tracker recordings during functional MRI (fMRI). The ability to suppress tics/blinks was compared both on subjective (self-rating) and objective (eye-tracker) performance. For fMRI analysis we used a novel designed performance-adapted block design analysis of tic/blink suppression and release based on eye-tracker monitoring. RESULTS: We found that the subjective self-reported ability to suppress tics or blinks showed no significant correlation with objective task performance. In GTS during successful suppression of tics, the dorsal anterior cingulate cortex and associated limbic areas showed increased activation. During successful suppression of eye blinks in healthy subjects, the right ventrolateral prefrontal cortex and supplementary and cingulate motor areas showed increased activation. CONCLUSIONS: These findings demonstrate that GTS patients use a characteristic limbic suppression strategy. In contrast, control subjects use the voluntary sensorimotor circuits and the classical 'stop' network to suppress natural urges. The employment of different neural suppression networks provides support for cognitive behavioral therapy in GTS.


Subject(s)
Brain/physiopathology , Tourette Syndrome/physiopathology , Tourette Syndrome/psychology , Volition , Adult , Blinking , Brain Mapping , Eye Movement Measurements , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multimodal Imaging
3.
Ann Neurol ; 83(3): 636-649, 2018 03.
Article in English | MEDLINE | ID: mdl-29466841

ABSTRACT

OBJECTIVE: Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS: We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS: An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION: Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.


Subject(s)
Cysts/metabolism , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Membrane Proteins/metabolism , Potassium/metabolism , Animals , Astrocytes/metabolism , Brain/metabolism , Cysts/genetics , Demyelinating Diseases/metabolism , Hereditary Central Nervous System Demyelinating Diseases/genetics , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Membrane Proteins/genetics , Mice, Transgenic , Mutation/genetics , Seizures/genetics , Seizures/metabolism
4.
Ann Neurol ; 77(1): 114-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25382142

ABSTRACT

OBJECTIVE: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic disease characterized by infantile onset white matter edema and delayed onset neurological deterioration. Loss of MLC1 function causes MLC. MLC1 is involved in ion-water homeostasis, but its exact role is unknown. We generated Mlc1-null mice for further studies. METHODS: We investigated which brain cell types express MLC1, compared developmental expression in mice and men, and studied the consequences of loss of MLC1 in Mlc1-null mice. RESULTS: Like humans, mice expressed MLC1 only in astrocytes, especially those facing fluid-brain barriers. In mice, MLC1 expression increased until 3 weeks and then stabilized. In humans, MLC1 expression was highest in the first year, decreased, and stabilized from approximately 5 years. Mlc1-null mice had early onset megalencephaly and increased brain water content. From 3 weeks, abnormal astrocytes were present with swollen processes abutting fluid-brain barriers. From 3 months, widespread white matter vacuolization with intramyelinic edema developed. Mlc1-null astrocytes showed slowed regulatory volume decrease and reduced volume-regulated anion currents, which increased upon MLC1 re-expression. Mlc1-null astrocytes showed reduced expression of adhesion molecule GlialCAM and chloride channel ClC-2, but no substantial changes in other known MLC1-interacting proteins. INTERPRETATION: Mlc1-null mice replicate early stages of the human disease with early onset intramyelinic edema. The cellular functional defects, described for human MLC, were confirmed. The earliest change was astrocytic swelling, substantiating that in MLC the primary defect is in volume regulation by astrocytes. MLC1 expression affects expression of GlialCAM and ClC-2. Abnormal interplay between these proteins is part of the pathomechanisms of MLC.


Subject(s)
Cysts/genetics , Cysts/pathology , Cysts/physiopathology , Gene Expression Regulation, Developmental/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Hereditary Central Nervous System Demyelinating Diseases/physiopathology , Adolescent , Adult , Age Factors , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Brain Edema/etiology , Cerebellum/pathology , Cerebral Cortex/cytology , Cerebral Cortex/pathology , Child , Child, Preschool , Cysts/metabolism , Disease Models, Animal , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Humans , Infant , Infant, Newborn , Membrane Potentials/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Postural Balance/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , Sensation Disorders/genetics , White Matter/metabolism , White Matter/pathology , White Matter/ultrastructure , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...